
THESIS

NPSNET: SOFTWARE REQUIREMENTS FOR
IMPLEMENTATION OF A SAND TABLE IN THE VIRTUAL

ENVIRONMENT

by

Samuel A. Kirby

 September 1995

 Thesis Advisor: David R. Pratt
Thesis Co-Advisor: John Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Kirby, Samuel A.

September 1995 Master’s Thesis

Unclassified Unclassified ULUnclassified

 NPSNET: SOFTWARE REQUIREMENTS FOR
IMPLEMENTATION OF A SAND TABLE IN THE VIRTUAL
ENVIRONMENT. (U)

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

 The problem this thesis addresses is the lack of current computer applications which allow 3D graphical visualization and
manipulation of abstract control measures during military planning. 3D depiction of a battle plan is needed to reduce ambiguity
in planning and provide a clearer depiction of a commander’s actual intent.
 The approach taken was to build a networked Virtual Environment Sand Table. The system was built using NPSNET for
3D visualization and manipulation of control measures and ModSAF for the management of the measures.
 The result of this thesis was the implementation of a Virtual Environment Sand Table in NPSNET. The system enables the
creation and manipulation of control measures in a networked 3D Virtual Environment. The system provides intuitive
visualization of control measures overlaid on Virtual Terrain. Incorporating these features into a planning tool in a Virtual
Environment makes battle planning more effective and increases situational awareness by allowing expression and depiction of
abstract concepts and ideas in a shared medium.

.

Virtual enviroments, distributed simulation, planning, visualization

ii

iii

Approved for public release; distribution is unlimited

NPSNET: SOFTWARE REQUIREMENTS FOR IMPLEMENTATION OF A
SAND TABLE IN THE VIRTUAL ENVIRONMENT

Samuel A. Kirby
Captain, United States Marine Corps

B.S., United States Naval Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author:

Samuel A. Kirby

Approved by:

David R. Pratt, Thesis Advisor

John Falby, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

iv

v

ABSTRACT

The problem this thesis addresses is the lack of current computer applications which

allow 3D graphical visualization and manipulation of abstract control measures during

military planning. 3D depiction of a battle plan is needed to reduce ambiguity in planning

and provide a clearer depiction of a commander’s actual intent.

The approach taken was to build a networked Virtual Environment Sand Table. The

system was built using NPSNET for 3D visualization and manipulation of control measures

and ModSAF for the management of the measures.

The result of this thesis was the implementation of a Virtual Environment Sand Table

in NPSNET. The system enables the creation and manipulation of control measures in a

networked 3D Virtual Environment. The system provides intuitive visualization of control

measures overlaid on Virtual Terrain. Incorporating these features into a planning tool in

a Virtual Environment makes battle planning more effective and increases situational

awareness by allowing expression and depiction of abstract concepts and ideas in a shared

medium.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. INTRODUCTION .. 1
B. PROBLEM STATEMENT ... 6
C. APPROACH ... 6

1. System Requirements .. 7
2. Control Measure Placement .. 7
3. Viewpoint .. 7
4. Planning ... 7
5. Visualization and Manipulation .. 7
6. ModSAF Compatibility ... 8
7. Networked Capability with Distributed Sand Tables 8

D. SUMMARY .. 8
II. BACKGROUND ... 9

A. INTRODUCTION .. 9
B. ABSTRACT VISUALIZATION .. 9

1. Scientific Visualization ... 9
a.Turbulence Tracking ... 9
b.Virtual Wind Tunnel ... 10
c.Molecular Synthesis .. 10
d.Sabot Discard Studies ... 10

2. Medical Visualization ... 11
3. Data Visualization ... 12
4. Abstract Visualization in Clinical Psychology 12
5. Computation Visualization .. 12

C. PLANNING TOOLS .. 13
1. Interactive Design, Analysis, and Illustration of Assemblies 13
2. ModSAF .. 13

D. LARGE SCALE SYNTHETIC BATTLEFIELDS 13
1. Air Force Institute of Technology Virtual Environments 13

a.Satellite Modeler ... 13
b.Synthetic Battle Bridge ... 14

2. Naval Postgraduate School NPSNET ... 14
E. SUMMARY .. 15

III. SAND TABLE COMPONENT OVERVIEW .. 17
A. INTRODUCTION .. 17
B. MODSAF OVERVIEW .. 18

1. 2D Overlay Display ... 18
2. Persistent Object Protocol ... 23

a.Persistent Object PDU ... 24
b.Simulator Present PDU ... 25
c.Delete Object PDU .. 28

viii

d.Describe Object PDU ...30
C. NPSNET OVERVIEW ..42

IV. SYSTEM INTEGRATION, DESIGN AND IMPLEMENTATION 45
A. INTRODUCTION ...45

1. Sand Table Operational Overview ...45
2. SAND TABLE DESIGN OVERVIEW ...47

B. SAND TABLE DESIGN AND IMPLEMENTATION48
1. PO_MEASURES_CLASS C++ Class ...48
2. Maintaining of Known Control Measures ...56
3. Processing of Incoming PDU Traffic ...57
4. Processing of Outgoing PDU Traffic ...61

a.Handshaking ...61
b.Object messages ...67

5. Local Creation of Control Measures Created at Other Stations70
6. Creation of Control Measures at Sand Table Station70

a.Point Creation ...73
b.Line Creation ...80

7. Proper Display of Control Measures on the Sand Table82
8. Manipulation and Movement of Control Measures on the Sand Table 85

C. SUMMARY ...86
V. CONTROL MEASURE VISUALIZATION AND MANIPULATION 87

A. INTRODUCTION ...87
B. GRAPHICAL MEASURE IMPLEMENTATION ..91
C. POINTS ...95
D. LINES ..101
E. MINEFIELDS ..107
F. PICKING, DRAGGING AND DROPPING ...108

1. Picking ...109
2. Dragging and Dropping of Control Measures116

a.Dragging and Dropping of Points ..116
b.Dragging and Dropping of Lines and Minefields119

G. CONE TREE MENU SYSTEM ..121
H. SUMMARY ...129

VI. WEAPON FLIGHT PATH VISUALIZER .. 133
A. INTRODUCTION ...133

1. Motivation ..133
2. Approach ..134

B. BALLISTICS BOX ...136
1. Ballistics Box Functionality ...136
2. Trajectory Visualization ...138
3. Ballistics Box Design and Implementation ..138

C. SUMMARY ...145
VII. CONCLUSION .. 147

ix

A. RESULTS ..147
B. FUTURE WORK ...152

1. More Robust Measure Representation ...152
2. Extended Planning Capabilities ...156
3. Additional Object Creation and Manipulation158
4. Display Research ..160
5. Distant Research ..160

C. SUMMARY ...161
LIST OF REFERENCES ..163
INITIAL DISTRIBUTION LIST ...165

x

xi

LIST OF FIGURES

 1: ModSAF GUI...20
 2: Placement of Control Measure in ModSAF...21
 3: Control Measure Modification Menu ..22
 4: Persistent Object PDU ..24
 5: Simulator Present Variant PDU...25
 6: Use of Simulator Present PDU ..28
 7: Delete Objects Variant PDU..29
 8: Describe Object Variant PDU..31
 9: Creation and Modification of Persistent Object...33
 10: Describe Object Point Class Variant..34
 11: Describe Object Line Class Variant...36
 12: Point Description Structure..37
 13: Road Segment Variant of Point Description..37
 14: Point Location Variant of Point Description ...37
 15: Describe Object Minefield Class variant ...39
 16: Area variant of Minefield...40
 17: Describe Object Text Class Variant...41
 18: Describe Object Overlay Class Variant ...41
 19: Possible Sending and Receiving of PO PDUs ...47
 20: PO_MEASURES_CLASS Inheritance Tree ...49
 21: PO_MEASURES_CLASS C++ Class...50
 22: Derived Class PO_POINT_CLASS...52
 23: Derived Class PO_LINE_CLASS ...54
 24: Derived Class PO_MINE_CLASS ..55
 25: Derived Class PO_TEXT_CLASS ..56
 26: Processing of Incoming PDU Traffic ..58
 27: Processing of Simulator Present Variant ...59
 28: Processing of Delete Objects PDU ..60
 29: Processing of Describe Object PDU..62
 30: Incorrect “Handshaking” Protocol...64
 31: Overlay Race Condition...66
 32: Correct “Handshaking” Protocol ...67
 33: Corrected Race Condition..68
 34: Cone Tree Menu ..71
 35: Menu Expanded One Level ...72
 36: Expansion of Menu to Terminator...73
 37: Second Expansion Building a Point...74
 38: Expansion to Terminator Building a Point ..75
 39: State Variables in po_build.cc ...76
 40: Actions in Building a Measure ..78
 41: Actions in Building a Measure (Continued) ..79

xii

 42: First Expansion Building a Line ..81
 43: Second Expansion Building a Line..82
 44: Expansion to Terminator Building a Line ...83
 45: Point Indicator During Line Construction ...84
 46: Point Placement on Terrain..88
 47: Line Placement Over Terrain...89
 48: 2 1/2D Cursor Implementation ..91
 49: Hot Mouse Object Highlighting...92
 50: Hot Mouse Point Highlighting...92
 51: Hot Mouse Line Highlighting..93
 52: Graphical Creation Flow of Control Measures..95
 53: Types of Point Measures Represented...96
 54: Point Measure Performer Structure ...98
 55: Creation of Point Measure pfGeoSet ...99
 56: Linear Measure Performer Structure ...102
 57: Creation of Linear Measure pfGeoSet ...104
 58: Calculating Line Strip Vertices Using Only points ...105
 59: Calculating Line Strip Vertices Using Subdivision...106
 60: Vertical Triangle Strips..108
 61: Minefield Performer Structure...109
 62: Pick Structure...110
 63: DoPick..111
 64: Sand Table Picking ..113
 65: Flow of HLPick..115
 66: movePO..117
 67: dragUpdatePO..118
 68: Dragging a Line ...120
 69: Cone Tree Menu ..122
 70: MENU_LEVEL Class ...123
 71: Dissected Cone Tree Menu..124
 72: Callback Structure..126
 73: assignCB ..127
 74: Actions in Menu Expansion...130
 75: Actions in Menu Expansion(Continued) ...131
 76: Weapon’s Trajectory Visualization ...135
 77: Expansion of Menu to Terminator...136
 78: Weapon Symbols ...137
 79: BALL_BOX Menu ..137
 80: Operation of Ballistics Box..139
 81: Operation of Ballistics Box(Continued) ..140
 82: Trajectory Fan Triangle Strip...141
 83: BALL_BOX Class...142
 84: Dissected Ballistics Box ..143

xiii

 85: Cone Tree Menu Placed on Fort Benning Terrain...148
 86: Point Control Measures on Fort Benning Terrain..149
 87: ModSAF Minefield Placed on Range 400 Terrain ..150
 88: Minefield After Being Dragged and Dropped ...151
 89: Line Being Built on Fort Benning Terrain...153
 90: Line After Construction Complete...154
 91: Closed Line Loop Constructed On Range 400 ..155
 92: Closed Line Loop After Construction..156
 93: Trajectory Visualizer Being Selected From Cone Tree Menu.............................157
 94: Rays Setting Mortar Firing Area..158
 95: Fans Showing Weapon’s Trajectories ...159

xiv

1

I. INTRODUCTION

A. INTRODUCTION

As the technology of virtual environments matures, the areas in which virtual

environments can be used as a paradigm to solve real world problems are also emerging.

However, the use of virtual environments should not be seen as a panacea for solving all

problems and the virtual environment solution should not be “shoehorned” into

inappropriate problems. The user of a virtual environment should not be encumbered by

the solution, rather the paradigm should enhance and ease the task at hand. A problem

which meets these criteria is that of planning military operations. The military has

successfully used virtual environments in simulation for training. However, there exists

further potential in virtual environments to be exploited by the military in the area of

abstract visualization.

The military has long embraced the use of simulation in training. Military aviators

have utilized sophisticated, albeit expensive, simulators as an integral part of their training.

Tank simulators have also been used successfully as a key component in crew training.

These environments allow the simulation of situations too dangerous or too costly to be

performed in the real world. These include airborne emergencies and live fire tactical

exercises. These scenarios’ goals are to closely simulate what would occur in the real

world, to in essence make the operator feel as if he is really in the simulated situation by

making the effects and stimuli of the simulation lifelike. Much of the effort in these

simulations has been to create a believable fidelity of the real world. In aircraft simulators,

this has included actually building physical mock-ups of cockpits and flight instruments.

The other side of this effort has been to create high fidelity displays for the users of

simulations to visualize the external world. The worth of such simulations is indisputable.

Aircrew can respond to emergencies using correct procedures because they have been in

2

that situation before - in the simulator. Tank crews can successfully target and destroy

enemy armor because they too have already been in that situation - in the simulator. In both

cases, operators have already gained the experience needed to handle the difficult situation.

Also to be noted is that while both of these situationscan be practiced in the physical world,

the simulator or virtual environment provides the means to practice the task more safely or

more cheaply.

 As graphics technology has progressed, a great deal of research has been put into the

fidelity of the graphics scene. The efforts have included creating realistic terrain displays,

realistic lighting, high fidelity image synthesis and environmental effects. These efforts

have in turn produced software and hardware with performance commensurate to rendering

at the needed polygon rates with robust image synthesis. Stereoscopic displays and

immersive technologies such as head mounted displays and CAVE displays further

increase the believability of simulation displays. A common goal of many of these research

efforts is to create displays in which there is a suspension of belief by the user, that is, the

fidelity of the display allows the user to concentrate on simulated tasks or experiences

rather than on the display itself.

 Further efforts to enhance realism include physically-based modeling to create correct

object behavior. Research is also investigating modeling and efficient representation of the

physical world. Efforts also include exploring channels other than the visual channel,

including auditory effects, speech input and haptic interfaces. Virtual environment research

has capitalized on advances in these areas and is enjoying more success in presenting

increasing fidelity of the physical world in the virtual world. The entertainment industry

has also benefitted from this progress with low-end virtual environments beginning to

become affordable for home and personal use. However, as efforts to create increasingly

realistic virtual environments proceed, efforts on findingwhatwe want to represent with

this bounty of fidelity must also be considered. With virtual environments the success of

simulation can and should be extended, but efforts should not belimited to an extension and

improvement of these simulations and virtual worlds. Rather, the paradigm of virtual

3

environments should be considered to solve a set of problems for which no other tools have

existed. Virtual environments offer us a new way to think and allow us to express and

display abstract and unseen thoughts.

Abstract visualization is a term trying to encompass many of the characteristics of

scientific visualization, while also trying to broaden the areas of coverage. The National

Research Council’s report on Virtual Reality points out, “VE technology is a natural match

for the analysis of complex, time varying datasets.Scientific visualization requires the

informative display of abstract quantities and concepts, rather than the realistic presentation

of objects in the real world [NRC95]. This statement is usually associated with data of a

scientific nature or as the report also states, “Scientific visualization [MCCO87] is the use

of computer graphics to create visual images that aid in the understanding of complex, often

massive, numerical representations of scientific concepts or results.” These methods of

presenting information can be extended beyond onlyscientificconcepts into other areas

exhibiting data with abstract, complex characteristics. Military operations present many

such problems. Problems with large complex representations, time varying datasets and

abstract concepts.

 Rather than being limited to presenting what would occur in the real world or an

imaginary world, the virtual environment can provide an enhanced or augmented view of

these worlds. While simulations provide the means to carry out operations too costly or too

dangerous to perform in the real world, or to create totally imaginary worlds, virtual

environments additionally provide the means for augmented capabilities which are

physically impossible in the real world. This should not be confused with, for example, a

monster in a virtual environment game which, whilephysically impossible,is still a world

view of an entity or physical object. Rather, the potential which should be recognized is

how the flow of thoughts and ideas can be greatly improved with the tool of virtual

environments.

An example of such visualization of normally unseen entities isTracktur, which

enables viewing fluid flowing over a vortex. This effort produced an Immersive

4

Environment which allowed a viewer to track a turbulent flow [BANK95]. While in this

case a turbulent flow physically exists, the virtual environment allows the visualization of

the turbulence. Perhaps even more significant is the unique way in which this visualization

enables the viewer to conceptualize the turbulence in a manner which no other medium

could provide. Similar efforts by NASA with virtual wind tunnels exploit the virtual

environment paradigm to visualize air flow over surfaces [BRYS91]. In both cases the

virtual environment provides a radically new method to evaluate voluminous amounts of

data.

Another area which can use the unique advantages of the virtual environment is that of

military planning. The effort in solving military planning problems differs from previous

simulations and virtual battlefields in that the emphasis is less on presenting high fidelity

rendering of players, terrain and buildings and more on visualizing abstract concepts of the

battle and the great amount of data the battlefield produces. The focus is less on game play

and more on visualizing concepts which previously were seen only in the minds of the

participants. This effort to bring out the intangibles of planning and viewing the battlefield

is not new. Maps with terrain features have been used with overlays of illustrative symbols.

These symbols depict various control measures and the units on the battlefield. Since these

overlays give only a 2D depiction of the battlefield, they do little to visualize the battlefield,

battle plan and the actual flow of battle. Participants viewing such an overlay each have

their own interpretation of how the depicted symbols will translate into movement and flow

in the real world. Participants also have to interpret mapped terrain into the 3D features

which truly comprise the terrain. The result is a set of intangibles based on interpretation,

with varying degrees of commonality in the perceptions.

To create a common conceptualization and visualization of a battlefield, planners have

taken the 2D overlays and built 3D physical models. Military planners have long utilized

Sand Tables to accomplish this. Sand Tables are detailed models, literally built from sand,

which depict the terrain features of an area of interest. Onto these terrain models lines are

placed to represent the various control measures of a plan. Physical models of units

5

involved in the plan are placed on the Sand Table. The model is then manipulated to gain

situational awareness of what the plan will look like. This method still places a great deal

of the visualization of the plan in the participant’s mind. Especially lacking are high

fidelity representations of terrain, detailed depiction of flow and movement, and temporal

correctness of the model. The plans are placed on the Sand Table, but the actual execution

of the plan is rather static. Further, limited viewpoint reduces terrain appreciation needed

for situational awareness.

A Virtual Environment Sand Table has the unique capability of representing these

dynamic and intangible factors in a common visual frame of reference. A virtual

environment allows users to see control measures in relation to the terrain over which they

were placed, something obviously unseen in the real world. A Virtual Environment Sand

Table would allow the user to actually see the flow of large units over high fidelity virtual

terrain. The user would be able to see variations of the plan from different vantage points

on and above the terrain. Timing considerations could be viewed directly. Planners’

understanding of the geometry of plans would be increased. Line of sight, cover and

concealment issues could be directly visualized and examined. Additionally, the strides

already made by virtual environments in model representation and atmospheric conditions

would enhance the visualization. Perhaps most significant would be the ability to bring

ideas from planners into a common forum. Decreased variance in interpretations would

present less interference and information exchange would be enhanced. Lastly, an

implementation of a Virtual Environment Sand Table could be placed over existing virtual

environments enabling players or low level units to conduct an exercise while actually

seeing the control and planning measures. Their feedback could provide planners with

additional insight and players with enhanced situational awareness and understanding of

the dynamics of the overall plan.

6

B. PROBLEM STATEMENT

The purpose of this thesis is to use a virtual environment to examine the visualization

of intangible, abstract and unseen factors in a Sand Table planning problem. Emphasis is

on creating a unique depiction of these factors to enhance situational awareness of planners.

Control measures and traditional Sand Table techniques are presented in the virtual

environment. Control measures can be placed on terrain models giving enhanced terrain

appreciation of measure placement. Plans may be constructed, executed and viewed over

virtual terrain.

Units are represented as icons on the Virtual Environment Sand Table. Emphasis is on

depicting the flow of units on the battle field. Temporal aspects of control measures and

timing aspects of moving entities are visualized, giving planners greater understanding of

the dynamics of the plan. Planners are able to take virtual tours of the battlefield increasing

their understanding of the geometry of the plan. They are able to view the plan as a whole

from a “god’s eye” view as well as tour crucial parts of the terrain to examine plan flow

from varying viewpoints. Tours also resolve line of sight and visibility issues in a context

where the entire plan is visualized.

C. APPROACH

In order to investigate and demonstrate the visualization of planning, a networked

Virtual Environment Sand Table is constructed on top of the Naval Postgraduate School’s

NPSNET. NPSNET provides a rich virtual world with robust visualization of the

battlefield and real-time distributed interaction in the virtual world. NPSNET provides an

excellent platform on which to construct a Virtual Environment Sand Table. Much of the

functionality of NPSNET is retained and utilized to effectively enhance the visualization

during planning.

The Virtual Environment Sandtable is designed and built around the following

guidelines:

7

1. System Requirements

The system is designed to run on Silicon Graphics Onyx Reality engine computers and

Silicon Graphics Indigo Computers. Software is constructed using C++ and Silicon

GraphicsPerformer real-time development libraries.

2. Control Measure Placement

The Virtual Environment Sand Table enables the user to place standard control

measures onto the terrain which depicts the plan being constructed. These measures

include boundary lines, units symbols, linear control measures, area control measures and

symbols depicting battlefield flow.

3. Viewpoint

The Virtual Environment Sand Table enables the viewer to examine the plan from

many different viewpoints to include a “god’s eye view” as well views from positions on

the terrain. This enables users to construct large scale plans and then visually verify the

finer details of the plan.

4. Planning

The Virtual Sandtable enables the user to build complex plans over the virtual terrain

and have the capability of executing the plan. The planning process is interactive which

allows users to examine and critique the plan as it is being build. During execution the plan

is able to proceed at different rates allowing the user to examine the plan in progress. Users

can also change the plan as it is being played in order to visualize planning ideas.

5. Visualization and Manipulation

In addition to using the visualization of NPSNET, the Virtual Environment Sand Table

provides the user with appealing representations of the planning tools and flow of the plan.

The placement of the lines is visually appealing and intuitive. Similarly, the manipulation

of lines and points is intuitive and follow a common sense approach as to how an object

should move when it is manipulated.

8

6. ModSAF Compatibility

The Sand Table is compatible with the Modular Semi-Automated Forces System

which was produced by the LORAL corporation for the U.S. Army. The Sand Table is able

to display and manipulate control measures created by ModSAF and ModSAF is capable

of doing the same with the Sand Table measures. This requirement is both a backwards

capability in that ModSAF only offers a 2D display and a utilization of ModSAF’s quite

extensive automated management of control measures. ModSAF will be discussed in more

detail later in Chapters II and III.

7. Networked Capability with Distributed Sand Tables

The Sand Table is able to operate on a single workstation, or work in concert with

another workstation running a Sand Table. Objects on one Sand Table are able to be

viewed and manipulated by another Sand Table. This requirement offers a new and

exciting means for geographically separated units to engage in interactive planning. No

medium has offered this capability which results in the reduction of ambiguity and increase

in coordination.

D. SUMMARY

The virtual environment enables developers to go beyond creating high fidelity

representations of physical and visual objects of the real and imaginary worlds. Virtual

environments enable the user to actually visualize abstract concepts, dynamic ideas and

physical phenomena which would normally be unseen. This thesis uses this capability as

a paradigm to investigate the visualization of creating complex battlefield plans on a

Virtual Environment Sand Table.

9

II. BACKGROUND

A. INTRODUCTION

While abstract visualization is an ongoing research topic, the area of planning

visualization is a new area of research as is each new application usingabstract

visualization. The Sand Table is actually comprised of individual components on which

research has been conducted. These components include those efforts inabstract

visualization which have explored scientific, medical, computation and data visualization.

Another area of research has been in providing interactive planning tools. Lastly, research

has been conducted in the development of large scale synthetic battlefields. Each of these

components will be briefly examined below with examples of research in each area.

B. ABSTRACT VISUALIZATION

1. Scientific Visualization

a. Turbulence Tracking

As mentioned in Chapter I, theTracktur system is an immersive interactive 3D

system which allows researchers to visualize and analyze fluid dynamics. This effort

produced an Immersive Environment which allows a viewer to track a turbulent flow.

While in this case a turbulent flow physically exists, the virtual environment allows the

visualization of the turbulence. Perhaps even more significant is the unique way in which

this visualization enables the viewer to conceptualize the turbulence in a manner which no

other medium could provide. The virtual environment provides a radically new method to

evaluate voluminous amounts of data. The system visualizes gigabytes of scientific data

generated from supercomputer models. The visualization allows fluid dynamicists to

navigate the simulation visually, providing new insights into the flow model. [BANK95]

10

b. Virtual Wind Tunnel

NASA Ames has developed aVirtual Wind Tunnel to visualize Computational

Fluid Dynamics Codes which have very large, complicated and dynamic datasets. The

system uses a boom mounted display from Fake Space Systems. The system enables

scientists to interact with data generated from supercomputers allowing the user to actually

see and interact with air flow over aircraft surfaces. The system enabled research which

previously would have had to be conducted by examination in a physical wind tunnel. The

enabling power of visualizing the abstract data is apparent. [BRYS91]

c. Molecular Synthesis

Research at the University of North Carolina has allowed chemists to manipulate

drug molecules in a virtual environment. Their research includes the use of haptic displays

in which researchers can experience the force feedback of molecular forces in molecular

docking [KALA93]. This exemplifies the display of factors which prior to being visualized

in a virtual environment could only be conceptualized in a chemist’s mind. This

underscores a characteristic of abstract visualization in that many of the abstract ideas

visualized have in fact been visualizedbefore--in peoples’ minds. This did not allow

scientists to express ideas without interference from personal perceptions and varying

experience levels. This concept is a strong undercurrent in utilizing abstract visualization

for military purposes.

d. Sabot Discard Studies

A final example of scientific visualization will illustrate a potential benefit of

abstract visualization. Research conducted by ARL examined Kinetic Energy penetrators

(sabot rounds fired from tank cannons) to see if a sabot carrier would interfere with the

sabot round after firing. While a virtual environment was not used, a visualization of data

collected when firing the rounds provided interesting results. A movie was created of the

visualization showing an interaction of pressures as the round was being fired. The movie

11

illustrated a phenomena that was not known until the visualization was produced. This

example shows how visualization can provide unexpected insight into a problem.

2. Medical Visualization

Researchers at the German Research Center for Computer Technology have developed

a system to visualize ultrasound examinations of the heart. The system is also used to plan

surgery. Medical visualization is similar to battlefield training in that both physicians and

military planners are trained to mentally visualize 3D information from 2D sources. For

example, physicians mentally visualize x-rays and CT images while military planners

visualize maps and overlays. Both rely heavily on training, skill and experience. The

system provides a visualization of the beating heart and blood flow within the heart

enabling better understanding of the dynamics of the heart. An innovative “workbench”

display in which stereoscopic images are projected onto the surface of a table provides a

very realistic visualization of structure and dynamics previously unseen. [KRUG94]

Other research efforts include visualization of patients’ CT scans for use by

neurosurgeons prior to operations. Visualization systems integrate a series of CT slices,

something normally done mentally by the neurosurgeon. This allows greater localization

of intracranial targets prior to the operation. The system also offers features of image

rotation, zoom and translucency for examinations of structures [KALA93]. This ability to

obtain “impossible viewpoints” and orientations is another feature of abstract visualization

which should be stressed when used in military applications.

A final example of medical visualization is work conducted by Henry Fuchs at UNC.

This effort combines a see-through head-mounted display with ultra-sound visualization to

allow a physician to “see-through” a patient in real time. This research would give

surgeons much greater awareness during surgical procedures. This combination of abstract

visualization and augmented reality could have military applications. An example would

be a see-through display for soldiers which would provide navigation displays super-

imposed on the real world.

12

3. Data Visualization

Research by Xerox PARC usingCone Trees has enabled the visualization of

hierarchial information structures. The efforts address the limatation’s of human cognitive

abilities when dealing with large scale and complex information spaces. Data spaces are

represented as 3D cones which greatly increase the users ability to conceptualize and

understand the data. This system has been demonstrated using a directory in a Unix file

system in which 600 directories and 10,000 files were visualized at one time. Also

demonstrated was the visualization of company organizational charts. The system provides

an impressive visualization of very complex data spaces allowing greater understanding of

the represented space by the users of the system. [ROBE91]

4. Abstract Visualization in Clinical Psychology

Researchers in Japan utilized a virtual environment to implement Sandspiel, a

technique used in the diagnosis and treatment of autistic patients. Researchers created a

Virtual Sand Box in which patients created landscapes which were then evaluated by

doctors. Users of the system manipulated a wand to modify the virtual landscape.

Placement of objects and modifications of the landscape provide visualization of abstract

concepts and impressions. This effort also addresses some of the input and output concerns

of creating such a system. This system addresses methods on how to express ideas and

abstract notions in a shared environment. [KIJI94]

5. Computation Visualization

Researchers at the Georgia Institute of Technology are using 3D visualization to

examine algorithms, computer programs and computations [STAS92]. The research

addresses new methods to examine a computer program’s or process’ execution using 3D

visualization. While this effort examines the animation of software processes rather than

implementing a virtual environment, it illustrates how visualization can be used as a new

and innovative paradigm to solve old problems. Further, it also shows the recurring theme

that program visualization was occurring before--in the programmer’s mind. The

13

visualization provides a means to manifest complicated concepts from a common

viewpoint.

C. PLANNING TOOLS

1. Interactive Design, Analysis, and Illustration of Assemblies

Research at the University of Utah has used interactive graphical tools in the design of

mechanical parts and assembly planning. The project enabled rapid visualization of parts

during the design process. Top down and bottom up design of complex assemblies was

made easier with the tool. The tool allowed designers to explore the parts and assembly as

the parts were being designed. Conflicts between mating parts could also be discovered

using a natural interface. [DRIS95]

2. ModSAF

The LORAL corporation has developed the Modular Semi-Automated Forces System

for the U.S. Army. In addition to providing Semi-Automated Forces, ModSAF provides

GUI based mission planning. Additionally, ModSAF forces have been implemented in the

Naval Postgraduate School’s NPSNET [MOHN94]. While ModSAF provides for

interactive mission planning and management of units, it does not provide the visualization

of the control measures and dynamic flow of a plan. Further, the product does not allow

the virtual touring of the 3D battlefield. The system does provide semi-autonomous forces

which would be very beneficial during planning and examining the dynamics of a battle

plan in the Virtual Sandtable.

D. LARGE SCALE SYNTHETIC BATTLEFIELDS

1. Air Force Institute of Technology Virtual Environments

a. Satellite Modeler

The Satellite Modeler is a virtual environment application which models the

near-Earth space environment and displays satellite orbits. It visualizes the spatial relations

14

between vehicles in orbit [STYT95]. This is an example of a situation in which the desired

viewpoint is impossible to obtain physically, yet by employing a virtual environment a

visualization is produced which greatly increases the ability to cognize the complex

information.

b. Synthetic Battle Bridge

Another virtual environment which AFIT has created is an immersive command

observatory for viewing a large area battlefield. TheSynthetic Battle Bridge is a system

designed to give the battlefield commander greater situational awareness of a battle in

progress [ROHR94]. The project visualizes atmospheric effects as well as radar displays

and space displays. This project does much to visualize the flow of the battle. The system

provides tools which enable the user to view aggregate information about the battlefield

environment. Some of the features include multiple viewpoints and visual cues to identify

actors in the virtual environment. These cues include transparent “bubbles”, aircraft trails

and locators which give information concerning type and motion of players on the

battlefield.

The goals of theSynthetic Battle Bridge and Satellite Modelertypify the

difficulties and also the potential of abstract visualization applications for the military.

Both offer high degrees of complexity in large environments with a large number of actors

and dynamic unpredictable actions [STYT95]. Stytz further points out a key aspect of the

projects which is the fact that in both projects it is difficult to maintain a mental model of

the environment. This would be true in many military applications of abstract

visualization. Both theSynthetic Battle Bridge and theSatellite Modeler are good starting

points in the development of abstract visualization systems for the military.

2. Naval Postgraduate School NPSNET

NPSNET is a networked, distributed simulation system which allows multiple users to

share the same virtual environment [BARH94]. The system evolved from a military

vehicle simulator into the current virtual environment. While the system does not employ

15

abstract visualization it does offer great potential as a platform on which to put an abstract

visualization application. This is the focus of the Virtual Environment Sand Table. This

project will be discussed as an example of the direction abstract visualization applications

could go.

E. SUMMARY

 Each of the above visualization systems quantifies and depicts unseen, vague and

complex data visually and displays it in a manner which acts as an enabling tool for greater

understanding of the data. The systems offer an increased capability to the user, be it the

ability to see air flow, see through a patient or see satellites in orbit. Each of the systems

also replaces a process or paradigm which placed the burden of conceptualizing the data on

the ability of people to visualize the data mentally. The emphasis here is not that people

should not think, rather that a common visualization should stimulate a common frame of

reference between people for the exchange of ideas. The visualization should be a starting

point in the person’s minds formorethought.

The major contrasts between these examples and potential military uses are the exact

nature of the data being represented. Whereas the primary focus of previous efforts has

been in visualizing large numeric datasets, often generated by super computers, the

Sanspiel, Cone Trees and design of assemblies illustrate this is not always the case. Often

the visualization simply amplifies an aspect of human perception of an idea. Further, the

Synthetic Battle Bridge shows how the battlefield can be visualized.

16

17

III. SAND TABLE COMPONENT OVERVIEW

A. INTRODUCTION

In order to be effective, the Sand Table system must allow the user to create entities

such as lines and points. These points and lines are the abstract concepts to be represented

in the Virtual Environment and symbolize the control measures of the battlefield. They are

also icons already in the lexicon of military planners’ minds. Since these symbols are

already familiar to planners, the changes made to them were only those necessary to place

them in a 3D world. The problem of representing the measures in the Virtual Environment

consists of two parts. The first part is developing the means to actually visualize, create,

select and move the control measures.

The second aspect concerns how the objects are maintained once they are created and

how they are disseminated to distributed Sand Tables. The maintenance of the measures

include network protocols to enable other planning workstations to be aware of planning

measures. Protocols also enable transmitting of control measures being placed and the

current placement and characteristics of all the planning measures present. This

maintenance is accomplished, for example, by sending a protocol data unit (PDU) on the

network to indicate a measure has moved, changed color or changed type of measure. This

maintenance also includes a need for periodic sending of a heartbeat message which

includes all measures present.

The philosophy used in the design of the Sand Table system was to incorporate as much

functionality from existing systems into the Sand Table. The two parts described above

were both formidable endeavors in themselves. However, by incorporating current

capabilities from existing systems, the requirements for the Sand Table were obtained. The

major systems used were ModSAF and NPSNET. ModSAF can be used as a battlefield

planner. It allows the user to construct plans and actually have the plans executed.

18

ModSAF also manages abstract measures, such as points and lines, drawn on the battlefield

during a simulation. The Sand Table uses ModSAF to actually manage entities. In essence

the Sand Table has some very basic capabilities to maintain control measures but whenever

possible the Sand Table passes the management of the control measures to ModSAF.

Similarly, an effort to create the graphical visualization of the Sand Table from scratch

would have been prohibitive. So, for the visualization and manipulation of the control

measures NPSNET is used. NPSNET provides a rich ability to represent many terrain

databases. NPSNET also provides the ability to navigate over terrain and “tour” an entire

virtual battlefield. NPSNET has the further advantage of being written using Silicon

Graphics’Performer which provides a very extensible application.

B. MODSAF OVERVIEW

ModSAF is comprised of both a front end and back end system. The back end of the

system is SAFSim which is responsible for simulating units and sending ModSAF

simulation messages to the network. SAFSim is an extensive system to both manage

created entities and simulate semi-automated forces. The front end is a 2D graphical user

interface (GUI) at a ModSAF station which allows the user to control the semi-automated

forces and plan in the ModSAF environment. [SAFF93]

1. 2D Overlay Display

ModSAF has the capability of creating a 2D GUI to represent anoverlay of a

battleplan. The term overlay is descriptive in that it originally referred to a piece of

transparent plastic laid over a map of terrain onto which a battle plan was physically drawn.

Control measures were depicted symbolically on the plastic with control points and lines

being drawn over the terrain on the map which represented the actual terrain. ModSAF

uses this principle and presents overlays in an OSF/Motif based interface. The ModSAF

GUI can be compared to the physical overlay as the Sand Table in the Virtual Environment

can be compared to a physical Sand Table.

19

The user can build battleplans by selecting control measures and placing them on the

2D terrain of the ModSAF overlay. The control measures are selected by choosing the

button for the desired measure from the vertical menu bar of the ModSAF display. This

menu bar is shown in Figure 1.

The GUI has the capability of maintaining and displaying many overlays. ModSAF

displays only those overlays selected by the user; however, the user can select more than

one overlay. Measures sent in PDUs contain information as to which overlay they belong.

This will be discussed in the Persistent Object Protocol; however, it should be noted that

the existence of overlays and how ModSAF displays them is important when integrating

the Sand Table system to be compatible with ModSAF.

Within the ModSAF GUI is the capability to create control measures to include points,

lines, minefields and units. The user selects what type of measure he wishes to place on

terrain and then uses the mouse to select the geographical position onto which the object

will be placed. This is shown in Figure 2.

Once placed the user can move the measures, be they lines, points or minefields, to any

location on the map display. The user can also select measures to change their color, style,

thickness or other attributes. A menu for changing the attributes of a point is shown in

Figure 3. Measures placed on an overlay at a ModSAF station and any subsequent changes

to those measures will be displayed on all other ModSAF stations displaying the chosen

overlay.

In addition to being able to place control measures, the ModSAF GUI allows for the

placement of military units onto the map. Units are also selected from the vertical menu

bar and positioned using the mouse. The user is given a choice as to what type the unit will

be (e.g. M1 tank unit, AH-64 helicopter unit) and the size of the unit (e.g. company,

battalion, section). The units can then be tasked extensively for moving on routes,

attacking enemy targets, proceeding to refueling points or orbiting, to name a very small

set of examples of tasking available. The types of units available and the realistic flexibility

of tasking and executing missions is very inclusive for military missions and events likely

20

Figure 1: ModSAF GUI

21

Figure 2: Placement of Control Measure in ModSAF

22

on a current battlefield. Further, these units can be assigned from opposing forces and will

execute realistic reactions against enemy forces based on real world capabilities and

assigned missions and rules of engagement. The units behave realistically in a semi-

automated mode and are controlled by the mentioned back end of the ModSAF simulator.

The capabilities of ModSAF were used in NPSNET prior to the Sand Table but for a

different purpose. In previous versions of NPSNET, ModSAF was used to populate the

battlefield with vehicle entities. The entities moved realistically over the terrain and

behaved as the vehicles they represented. The inclusion of ModSAF entities in the

NPSNET battlefield proved very successful by increasing the number of vehicle entities

which could be fired upon, and fire back, when the number of human players in the Virtual

Environment was relatively low. However, these efforts diverge from the intent of the

Sand Table in that the Sand Table’s focus is less on game play and more on planning.

The Sand Table is an extension of the ModSAF GUI into the 3D Virtual Environment

of NPSNET. The extension is a logical one in that the actions of creating and modifying

control measures discussed above on the 2D GUI, are available on the Sand Table.

However, the Sand Table is not only an extension of the GUI, rather, it is integrated with

ModSAF in that entities created on one system can be displayed and manipulated on the

other. Lastly, the realistic control and management of measures which are accomplished

Figure 3: Control Measure Modification Menu

23

by the ModSAF back end can be exploited by the Sand Table. Key in this integration is

communication between ModSAF and the Sand Table. Fortunately, ModSAF already has

complete means to communicate between simulators. This means is the Persistent Object

Protocol and it is what the Sand Table uses to communicate with other Sand Tables as well

as communicate with ModSAF.

2. Persistent Object Protocol

The Persistent Object (PO) Protocol is a user level network communication protocol

used for communication between ModSAF simulators. The ModSAF library is written in

the C programming language. The specification for the protocol is contained in LibPO,

Persistent Object Library, ModSAF B Software Documentation and will be summarized

[SMIT93]. ModSAF refers to workstations using the PO Protocol assimulators and that

term will be used in this context similarly, i.e. a workstation which is using the protocol

which may either be a ModSAF station or a Sand Table. What has been referred to thus far

as control measures to include points, lines and minefields in the Sand Table, are a subset

of what ModSAF terms Persistent Objects. Overlays are also Persistent Objects.

Additionally, the PO protocol contains objects such as units, tasks, text and fire parameters.

Throughout this thesis the terms “control measures” and “persistent objects” can be

considered synonymous. Subtle differences do exist but they are primarily that “control

measures” refers to a more abstract concept of what the Sand Table is trying to express and

visualize and “persistent objects” are an implementation of those concepts in a formal

specification in ModSAF.

The following is a discussion of the PO Protocol and PDUs used by the Sand Table.

The protocol is described in detail with specific Sand Table use of the protocol being

deferred except in cases where Sand Table usage enhances clarity. All code for described

PDUs and variants can be found in the ModSAF library file p_po.h.

24

a. Persistent Object PDU

 Communications concerning Persistent Objects are sent using Persistent Object

PDUs which will be described in detail. The code excerpts for the structure definition of

the Persistent Object PDU is given in Figure 4.

Included in the header portion of the PDU isversion , which contains the

ModSAF protocol version being used by the sending simulator. Protocol versions are

identified by date and are also contained in p_po.h.kind is used to identify which type of

information is in thevariant portion of the PDU.exercise anddatabase uniquely

identify the problem space which the PDUs are describing. As was mentioned, ModSAF

can also be used to extensively simulate semi-automated entities on the battlefield. These

simulations also utilize an exercise identifier. When a simulator is used for both simulation

of entities and POs, it is expected that the exercise identifier be the same. The database

identifier can be used to further subdivide an exercise into separate independent PO

databases; however, currently the Sand Table utilizes only one database and the identifiers

typedef struct {
SP_PersistentObjectProtocolVersion version;
SP_PersistentObjectPDUKind kind;
SP_ExerciseID exercise;
SP_DatabaseID database;
unsigned short length;
unsigned short _unused_40;
union {

SP_SimulatorPresentVariant simulatorPresent;
SP_DescribeObjectVariant describeObject;
SP_ObjectsPresentVariant objectsPresent;
SP_ObjectRequestVariant objectRequest;
SP_DeleteObjectsVariant deleteObjects;
SP_SetWorldStateVariant setWorldState;
SP_NominationVariant nomination;

} variant;
} SP_PersistentObjectPDU;

Figure 4: Persistent Object PDU

25

are used by the Sand Table to ensure that both it and ModSAF are referring to the same

planning space.

Thevariant portion of the PDU is the part most utilized by the Sand Table. It

is the portion which describes and allows manipulation of objects between Sand Table and

ModSAF workstations. In particular, three of the variants,simulatorPresent ,

deleteObjects anddescribeObject are used.

b. Simulator Present PDU

 By definition of the PO Protocol, each simulator on the network which is

interacting with other simulators using the PO Protocol broadcasts a Simulator Present

PDU every 20 seconds. If this heartbeat message is not received for 48 seconds the

simulator with the lightest load will take ownership of the objects owned by the simulator

which failed to pass the heartbeat. The structure of the Simulator Present variant is given

in Figure 5.

The Simulator Present PDU contains many fields for an extensive protocol

which includes protocols for nomination of simulators to assume the loads of simulators

typedef struct {
SP_SimulationAddress simulator;
SP_SimulatorType simulatorType;
unsigned short _unused_3;
unsigned long databaseSequenceNumber;
unsigned long load;
float simulationLoad;
unsigned long time;
unsigned long packetsSent;
unsigned short unitDatabaseVersion;
unsigned relativeBattleScheme : 1;
unsigned _unused_4 : 15;
SP_TerrainDatabaseID terrain;
char hostname[SP_maxSPHostnameLength];

} SP_SimulatorPresentVariant;

Figure 5: Simulator Present Variant PDU

26

not responding, load balancing and synchronization. Maintaining the stated design

philosophy, the Sand Table tries to shed all of the PO maintenance to ModSAF stations

and as such does not assist in the load balancing or assumption of ownership of objects

created by other simulators. The Sand Table does not utilize all of the ModSAF

functionality and only those fields ofSP_SimulatorPresentVariant which relate to

functionality used by the Sand Table will be discussed.simulator is comprised of the

site and host identification of the simulator.simulatorType describes what type

simulator has sent the simulator present PDU. More specifically, the type of simulator

allows ModSAF stations to determine the capabilities of other simulators for possible load

balancing. The types of simulators are contained in basic.h which is contained in the

ModSAF library. The Sand Table uses a type ofSP_simulatorUnknown since no other

simulators would recognize a Sand Table type simulator at this time.

databaseSequenceNumber while not specifically used by the Sand Table, is

an important field to coordinate with ModSAF in order to ensure the proper maintenance

of measures by ModSAF.databaseSequenceNumber is the identity of the shared

database. It is used to delete all of the objects from a database. As defined by the PO

Protocol each simulator maintains the current sequence number of its database. If a

simulator receives a sequence number higher than its current sequence number, it must

remove all objects from its database and increase its database sequence. If a simulator

receives a sequence number lower than its own, it should send a Simulator Present PDU to

ensure that the simulator with the lower sequence number receives theproper sequence

number. A simulator should start with a sequence number of zero and increment

accordingly on receipt of higher sequence numbers.

As was stated, the Sand Table does not explicitlyuse the capability to delete all

of the objects in the database. However, the Sand Table must maintain what the database

sequence number is, or ModSAF may delete objects with a lower sequence number. If the

objects are created on the Sand Table and broadcast with an invalid database sequence

number, the objects willnot be maintained by the ModSAF simulators.

27

terrain is used to specify the identity of the terrain database being used. This

is needed by ModSAF for the representation of terrain on the 2D GUI display. NPSNET

uses a different terrain database format; however, the database is needed by the Sand Table

for registration and proper placement of lines which are created on a ModSAF station. In

particular, a database file is needed when a line segment which follow roads is sent from a

ModSAF station. A ModSAF library program is used to make the conversion from road

segments into points and the terrain database is used.

TheSP_SimulatorPresentVariant is used by the Sand Table primarily for

two purposes. As specified in the PO Protocol definition, when a Simulator Present PDU

describes a new object, receivers should start a periodic transmission of Describe Object

PDUs. The is one of the primary uses of Simulator Present PDUs by the Sand Table. When

a Sand Table is initially run, it will transmit a Simulator Present PDU. Simulators

maintaining persistent objects will then begin broadcasting Describe Object PDUs enabling

the Sand Table to learn the objects present in the current planning problem.

The second use of theSP_SimulatorPresentVariant is used in the passing

of persistent object maintenance to ModSAF stations. When a Sand Table receives a

SP_SimulatorPresentVariant PDU, the PDU is checked by examining the type to

ensure the simulator present is not another Sand Table. If thesimulatorType is of type

SP_simulatorUnknown , the Sand Table assumes that the simulator present was from

another Sand Table and the simulator is not captured. If it is not, the receiving Sand Table

will then use the sending simulator to manage objects which are created or modified by the

Sand Table. This will be discussed in greater detail; however, the importance of the

SP_SimulatorPresentVariant PDU should be noted. A summary of the use of the

SP_SimulatorPresentVariant PDU is given in Figure 6. Lastly, the Sand Table does

transmit a heartbeat; however, since ownership and maintenance of persistent objects is

shed to other simulators, the absence of this heartbeat from Sand Tables at this time would

not have an effect.

28

c. Delete Object PDU

Another variant of theSP_PersistentObjectPDU is thedeleteObjects

variant. The PDU is very straightforward and is sent by a simulator to remove persistent

ModSAF Response

SAND
TABLE

ModSAF
STATION

Upon Start-up

Simulator
Present

SAND
TABLE

ModSAF
STATION

PDU

PDU Describe
Object

SAND
TABLE

ModSAF
STATION

Simulator
Present

PDU

PDU

Sand Table Response

PDU

Is Simulator
Type

Unknown?

NO. Use This Simulator

YES. Disregard PDU

Figure 6: Use of Simulator Present PDU

29

objects from the appropriate database. As specified in the protocol, a deleting simulator

must be able to rebroadcast a Delete Object PDU in response to Describe Object PDUs

pertaining to an object which was deleted. This rebroadcast of the Delete Object PDU

continues for five minutes thereby ensuring that all simulators maintain an accurate

representation of the current PO database. The structure is given in Figure 7.

deletingSimulator includes the site and host of the simulator which is

deleting the objects. It is not used explicitly by the Sand Table; however, when Delete

Object PDUs are sent, the site and host of the Sand Table are appropriately included for

use by ModSAF simulators. Of primary importance in the Delete Objects variant is

objectCount and objects[1] . These fields in the structure are the array of the

identities of the objects to be deleted and the actual number of those objects. The objects

in the array are identified by aSP_ObjectIDWorldStateIDPair . Contained within the

SP_ObjectIDWorldStateIDPair is an objectID which uniquely identifies a

Persistent Object. This identification is comprised of the site and host of the simulator at

which the object was created and an object number which is unique and incremented for

each new object at the creating simulator. Removal of the objects specified in the Delete

Object PDU are then handled locally by each simulator with the deleting simulator

rebroadcasting the Delete PDU as necessary in response to errant simulators sending

Describe Object PDUs for deleted objects.

typedef struct {
SP_SimulationAddress deletingSimulator;
unsigned char objectCount;
unsigned _unused_38 :24;
SP_ObjectIDWorldStateIDPair objects[1];

} SP_DeleteObjectsVariant;

Figure 7: Delete Objects Variant PDU

30

d. Describe Object PDU

The final variant of theSP_PersistentObjectPDU is thedescribeObject

variant and it is used to create new objects, modify old objects and change the owner of

objects.describeObject is the most important PDU variant used by the Sand Table and

it carries most of the functionality of the Sand Table. As the name implies the PDU is used

for the description of persistent objects in the desired exercise and database. More

specifically, the PDU variant contains the class of the objects described and all of the

characteristics of the object. The Describe Object PDU contains a sub-protocol used for

the different classes of persistent objects. The sub-protocol is contained in the variant

portion of theSP_DescribeObjectVariant structure. The code for the Describe

Object variant is given in Figure 8.

As with the other PDU variants discussed, the Sand Table does not use much of

the functionality supported by the Describe Object PDU and, as such, only the pertinent

parts will be examined in detail.databaseSequenceNumber is the identity of the shared

database and was discussed with the Simulator Present PDU. Its importance should be

reiterated in the Describe Object PDU. In order for a ModSAF simulator to maintain a

persistent object created by a Sand Table, thedatabaseSequenceNumber must not be

less than the current database sequence number maintained by the ModSAF station.

objectID uniquely identifies each object in the persistent object database and

is the same identifier contained in the Delete Object PDU. It consists of the creating

simulator site and host as well as a unique object number for that simulator.

worldStateID is not used by the Sand Table; however, it has potential for future versions

and added capabilities with the Sand Table. The world state enables the representation of

objects in different times or states of the problem. This would enable the display of future

or past objects on the Sand Table or ModSAF overlay. Objects can be represented in other

world states by changing theworldStateID in the PDU. Currently, the Sand Table uses

only the Real Time World State which is represented by zero in the site, host and object of

theworldStateID .

31

owner and sequenceNumber are the most important fields in the Describe

Object PDU for the shedding of PO management to ModSAF stations. The owner consists

of the site and host of the simulator which currently owns the object. Note that the owner

doesnot have to be the simulator which created the object. ThesequenceNumber , not to

be confused withdatabaseSequenceNumber , is a number which is incremented each

time an object is changed. Initially, when an object is created it has a sequence number of

one. When the owner of an object wishes to change an object, it increments the sequence

typedef struct {
 unsigned long databaseSequenceNumber;
 SP_ObjectID objectID;
 SP_ObjectID worldStateID;
 SP_SimulationAddress owner;
 unsigned short sequenceNumber;
 SP_PersistentObjectClass mclass;
 unsigned missingFromWorldState :1;
 unsigned _unused_35 :7;

 union {
SP_WorldStateClass worldState;
SP_OverlayClass overlay;
SP_PointClass point;
SP_LineClass line;
SP_SectorClass sector;
SP_TextClass text;
SP_UnitClass unit;
SP_StealthControllerClass stealthController;
SP_HHourClass hHour;
SP_TaskClass task;
SP_TaskStateClass taskState;
SP_TaskFrameClass taskFrame;
SP_TaskAuthorizationClass taskAuthorization;
SP_ParametricInputClass parametricInput;
SP_ParametricInputHolderClass parametricInputHolder
SP_ExerciseInitializerClass exerciseInitializer;
SP_FireParametersClass fireParameters;
SP_MinefieldClass minefield;
SP_SimulationRequestClass simulationRequest;

} variant;
} SP_DescribeObjectVariant;

Figure 8: Describe Object Variant PDU

32

number and sends a new Describe Object PDU with the increased sequence number as well

as the modified fields which describe the object.

To create a Persistent Object, a simulator sends a describe object PDU. By the

PO Protocol, the owner then transmits the Describe Object PDU every 30 seconds for five

minutes to ensure that all other simulators are aware of the object. After the five minutes

Describe Object PDUs cease; however, Objects Present PDUs (another variant of

SP_PersistentObjectPDU) are sent. Objects Present PDUs contain a list of all the

objects in the current database. Simulators then compare the objects they have in their

current database with those listed in the Objects Present PDU and may then request more

complete information on an object in question by using anobjectRequest variant of

SP_PersistentObjectPDU . Upon receipt of aobjectRequest a simulator will resend

the more descriptive Describe Object PDU. This protocol is depicted in Figure 9.

The PO Protocol also establishes a method for changing persistent objects which

already exist. To do this, the simulator wishing to change the object changes theowner

field in the Describe Object PDU. ThesequenceNumber of the object is also increased

to reflect the change. The simulator which is changing ownership then transmits a Describe

Object PDU with the changed owner and sequence number as well as any modifications to

the object itself. The following rules are prescribed by the PO Protocol concerning the

sequence numbers and owner fields of the Describe Object PDUs:

• If a simulator receives a PDU describing an object which it does not own, it will
ignore the PDU if the sequence number is less than what the simulator is currently
maintaining, or if the sequence number is the same and the owner is the same. If
the sequence number is greater or the owner has changed it should take the
information.

• If a simulator owns an object and receives a sequence number higher than is
currently maintained, the simulator gives up ownership to the new simulator and
updates the object.

• If a simulator owns an object and receives a PDU with an equal simulator number
it compares its address magnitude with the other simulators and if higher will
increment the sequence number, rebroadcast its own Describe Object PDU and
maintain ownership.

33

The Sand Table uses the above rules for creating and changing persistent objects

and is discussed in detail later. While the fields of the Describe Object PDU described thus

far have concerned creation, ownership and updating of PDUs, the PDU contains a sub-

protocol which describes the actual object in detail.mclass identifies what type of object

the PDU actually describes. It should be noted that in the original ModSAF C library

mclass is namedclass which caused a keyword naming conflict when integrated into the

SIMULATOR
A

Describe
Object

PDU
PDU Resent Every

30 Seconds for
New Object First 5

Minutes

Objects
Present

PDU
PDU Containing

List of All Objects
Present

Object
RequestPDU

PDU Contains
Request For

Object In Question

SIMULATOR
A

SIMULATOR
B

SIMULATOR
A

Describe
Object

PDU Resent For
Object In QuestionPDU

Figure 9: Creation and Modification of Persistent Object

34

Sand Table which was written in C++. As a programming note, the name was changed to

mclass and a modified copy of the header file p_po.h had to be used.

Thevariant portion of the Describe Object PDU contains the various possible

types of persistent objects. The variants most important to the Sand Table are those

describing points, lines and minefields. Also important for reasons of ensuring that

measures are displayed on the ModSAF stations is the overlay variant.

 The point measure is a measure located at one position on the terrain used to

describe a significant aspect of the plan at that point. An example of a point measure would

be a checkpoint, which has a specific symbol describing it, a specific location on the terrain

and a specific meaning with regards to creating a plan on a Sand Table. ModSAF currently

supports seventeen different types of point measures which would support the vast majority

of planning problems. The description of a point is contained inSP_PointClass , for

which the structure is included in Figure 10.

The fields used to describe the point are very straightforward and will be

described briefly.overlayID assigns the overlay in which the point measure should be

displayed. As discussed, ModSAF only displays objects in overlays which are being

displayed at that simulator. The Sand Table only displays a single overlay; however, this

field must be used to ensure that ModSAF will display the measures created by the Sand

typedef struct{
SP_ObjectID overlayID;
SP_PointStyle style;
Sp_OverlayColor color;
unsigned dashed : 1;
unsigned _unused_8 : 31;
SP_PointLocation location;
SP_Angle direction;
char text[SP_maxPointNameLength];

} SP_PointClass;

Figure 10: Describe Object Point Class Variant

35

Table. style describes the particular type of point the measure represents. The seventeen

possible points are contained in p_po.h. ModSAF supports five different colors also

contained in p_po.h.color describes the particular color for the point.Proposed or

uncertain measures are delineated on an overlay by representing the measures with dashed

lines. This representation is possible using thedashed field. Thelocation field gives

the position on the terrain database of the point measure.direction enables an

orientation to be included in the description of a point since some points may have an

orientation with respect to the terrain onto which they are placed. Lastly, points may have

text embedded within them to name a point or be more descriptive. Thetext field enables

the inclusion of text in the description of a point.

Lines represent linear control measures on the Sand Table. Like points they have

a unique representation, meaning and location on the database terrain. An example of a line

would be a boundary line separating two units on the battlefield. Another example would

be a route to be followed by a unit over the terrain. Each of the examples would be

represented by a different style. The structure for line measures is given in Figure 11.

overlayID , style , color and dashed have the same properties as was

discussed with the same fields in the point measures. Each line is comprised of a number

of points on the terrain. The number points in each line is maintained inpointCount .

thickness refers to the thickness of the line displayed on the overlay which represents

the measure on the virtual terrain or map. It is the thickness of the line in pixels and

concerns the display of the measure. This differs fromwidth which differs by line style

and represents the width of the measure on the ground expressed in meters.

beginArrowHead andendArrowHead specify the style of the arrow head on the ends of

the line (which may be no arrow).closed indicates whether the line should be represented

by a closed line loop in which the last point is connected to the first point.splined

specifies whether or not the line should be smoothed with a splining function and is not

used in the Sand Table at this time.route indicates whether the line indicates a route or

other control measures and is not used at this time.shouldBeSimulated , simulated ,

36

methodology andsimulator are used when creating simulation representations of the

lines and are not used by the Sand Table either.

The last field ofSP_LineClass , points , is somewhat special and deserves

closer examination.points is an array of points comprising the line. Points comprising

the lines can be one of two types. The first is a simple x and y representation of the location

of the point on the terrain. The second point representation, represents a road segment from

the terrain database. The code forSP_PointDescription , andSP_RoadSegment and

SP_PointLocation is given in Figure 12, Figure 13 and Figure 14 respectively.

ThepointType field in theSP_PointDescription structure indicates how

that point is represented. The variant portion contains the actual data describing the points.

If the point represents a road segment the starting and ending points of the segment are

given in this structure in thestartAt and endAt fields. Thedirection indicates

typedef struct{
SP_ObjectID overlayID;
SP_LineStyle style;
SP_OverlayColor color;
unsigned char pointCount;
unsigned char thickness;
unsigned short width;
SP_ArrowHeadStyle beginArrowHead;
SP_ArrowHeadStyle endArrowHead;
unsigned closed;
unsigned dashed;
unsigned splined;
unsigned route;

unsigned shouldBeSimulated : 1;
unsigned simulated : 1;
unsigned _unused_10 : 2;
SP_SAFMethodology methodology;
unsigned long _unused_11;
SP_SimulationAddress simulator;
SP_PointDescription points[1];

} SP_LineClass;

Figure 11: Describe Object Line Class Variant

37

whether the line should follow the segment from the first point to the last or last to first.

The road segment representation of a line is very useful, especially in cases such as road

marches, which proceed from one point to another only on roads. Using the ModSAF GUI

overlay, the user can select lines to follow roads and subsequent lines will follow the roads

of the terrain database. The Sand Table does not allow the user to automatically follow

typedef struct {
short pointNumber;
SP_PointType pointType;
unsigned char _unused_9;
union {

SP_RoadSegment roadSegment;
SP_PointLocation location;

} variant;
} SP_PointDescription;

Figure 12: Point Description Structure

typedef struct {
unsigned index : 24;
SP_Direction direction;
short startAt;
short endAt;

} SP_RoadSegment;

Figure 13: Road Segment Variant of Point Description

typedef struct{
long x;
long y;

} SP_PointLocation;

Figure 14: Point Location Variant of Point Description

38

roads at this time as does ModSAF; however, the Sand Table can receive PDUs with lines

containing road segments and properly display them.

As was discussed earlier, upon initialization the Sand Table needs a terrain

database for correlation and registration of points on the terrain. The Sand Table also

utilizes ModSAF library libroute.a to make the conversions between road segments to

points. Thus, when a line is received by the Sand Table, the point locations are either

directly accessible if given in theSP_PointLocation form or if given in the

SP_RoadSegment form are convertible to point locations on the terrain.

Minefields are also persistent objects which can be represented in the Sand

Table. Minefields differ from point and line measures in that they are active entities

managed by a simulator. Entities are the actual actors of the ModSAF simulation. The

entities are objects which interact with each other such as tanks, helicopters, and infantry,

differing from persistent objects which are more abstract objects. More specifically, a

minefield is a measure which can have an effect on simulated units and vehicle entities in

a simulation. For example, if a tank platoon drives over a minefield, casualties will be

inflicted on the platoon. This is not the case with lines and points which are imaginary

control measures and in fact have no physical significance in the real world. As such,

minefields are much more complex measures and their PDUs have extensive capabilities

to manage and control the minefield. The Sand Table uses only a small portion of the

minefield capabilities at present; however, future expansion could be incorporated.

Two variants of minefields are possible with only one of the variants being used

in the Sand Table. The first variant is Point Minefields and is not used. With this variant,

minefields are represented by point locations of each individual mine. The other method

and the one currently in use by the Sand Table is the Area Minefield. In this representation

minefields are described by a perimeter and a density. The locations of the mines are

represented by grids which are either on, indicating a mine is present in a grid box, or off

indicating no mine is present. These grids are used in the simulation of an active minefield

39

and are not discussed here. The structures forSP_MinefieldClass and

SP_MinefieldArea are presented in Figure 15 and Figure 16 respectively.

Since the Sand Table utilizes only a small portion of a minefield PDU’s

capabilities, only pertinent fields are discussed.overlayID, style, color andtext

specify the same information as was described with point and line measures.

minefieldType specifies which of the two types of minefields the PDU describes. The

actual minefield data is contained in the variant portion of the PDU, of which the Sand

typedef struct {
SP_ObjectID overlayID;
SP_LineStyle style;
SP_OverlayColor color;

char text[SP_maxPointNameLength];

SP_ObjectType munition;
SP_ObjectType detonator;

SP_SimulationAddress commander;
SP_SimulationAddress simulator;

SP_MinefieldType minefieldType;

unsigned shouldBeSimulated : 1;
unsigned simulated : 1;
unsigned _unused_13 : 6;

SP_SAFMethodology methodology;
unsigned char _unused_14;

long expansion1;
long expansion2;
long expansion3;
long expansion4;

union {
SP_MinefieldPoints point;
SP_MinefieldArea area;

} variant;
} SP_MinefieldClass

Figure 15: Describe Object Minefield Class variant

40

Table only implementsarea . Fields inSP_MinefieldArea concerning actual mines and

their locations and densities are not used by the Sand Table. The fields of concern are

pointCount , perimeter and origin . pointCount contains the actual number of

points delineating the perimeter of the minefield.perimeter is an array of the actual

points defining the perimeter given in x and y coordinates. Lastly, theorigin field is the

location of the southwest corner of the first minecell. While not currently implementing

the specifics of the actual minecells,origin is used to appropriately anchor text within the

minefield.

Text can be used with control measures. The PO Protocol has provisions for

sending text. Figure 17 shows the text variant of theSP_DescribeObjectVariant

PDU. overlayID is the overlay to which the text is assigned and is used in the same

manner as it was with the other measures.size is the font size of the text.length is the

length of the actual text which is contained intext . location is the coordinates of the

text location. The text can also be associated with another control measure and this

measure’s object identification is stored in associatedObject .

associatedPointNumber can be used with a line to associate the text with a specific

point in the line. The remaining fields are used to correctly position the text.

typedef struct {
 unsigned short size;
 unsigned short rowWidth;
 unsigned short density;
 unsigned short pointCount;
 SP_PointLocation perimeter[SP_maxMinefieldPerimeterPoints];
 SP_PointLocation origin;
 unsigned char minegrid[4];
} SP_MinefieldArea;

Figure 16: Area variant of Minefield

41

The final persistent object used in the current Sand Table design is the overlay

variant. The importance of overlays has been discussed and the actual structure of the

variant of the Describe Object PDU will be briefly covered. The structure for the overlay

variant is given in Figure 18.

name is a textual name of the overlay. The Sand Table makes use of this name

by creating an overlay named “NPSNET”. This naming is used to ensure measures are

displayed on both the Sand Table and the 2D GUI of ModSAF.color has more

typedef struct {
SP_ObjectID overlayID;
SP_TextSize size;
SP_OverlayColor color;
short length;
SP_TextAlignment alignment;
unsigned char _unused_17;
SP_PointLocation location;
short horizontalOffset;
short verticalOffset;
SP_ObjectID associatedObject;
short associatedPointNumber;
char text[4];

} SP_TextClass;

Figure 17: Describe Object Text Class Variant

typedef struct {
char name[SP_maxOverlayNameLength];
SP_OverlayColor color;
unsigned scratch : 1;
unsigned working : 1;
unsigned _unused_6 : 6;
SP_ForceID forceID;
unsigned char _unused_7;

} SP_overlayClass;

Figure 18: Describe Object Overlay Class Variant

42

significance and a slightly different meaning than similar fields in the previously described

persistent objects. In the previous objects the color field simply specified the color of the

measure. However, one of the options for color besides the five colors given in ModSAF

is to specify that the color of a measure is the overlay default.color in

SP_overlayClass is this overlay default color. When an overlay is being used the

default color must be known to enable the user the option of choosing the overlay color as

the color of the measure.forceID specifies which force should be displayed on the

overlay. SP_ForceID is defined in basic.h of the ModSAF library. While the Sand Table

does not offer an option as to what force to display, it does properly update the field to

SP_forceIDIrrelevent which ensures that ModSAF will displayall measures on the

“NPSNET” overlay.

The PDUs and variants described are the most important segments of the

ModSAF PO Protocol being used in the current design of the Sand Table. The actual Sand

Table implementation of the protocol in covered in Chapter IV.

C. NPSNET OVERVIEW

While the Sand Table uses ModSAF for management of control measures and uses the

PO Protocol to effectively communicate with ModSAF, the actual Sand Table system is

implemented in and sits on top of NPSNET. NPSNET originated as a vehicle simulator

and has evolved into a virtual world.

NPSNET is a large scale virtual environment which allows users to interact with 3D

terrain, objects and players on that terrain. The system is written in AT&T C++ and follows

an object oriented paradigm. The system uses a hierarchial approach when writing the

functionality of vehicles and weapons. It capitalizes on inheritance of much of the

functionality for vehicles from higher level classes. [ZYDA93]

NPSNET uses the Silicon Graphics, Inc. API calledPerformer. Performer handles

many of the graphics specific tasks of NPSNET such as hidden surface elimination and

culling [ZYDA93]. Performer uses a hierarchical directed acyclic graph (DAG) structure

43

to efficiently cull entire branches of a scene based on whatever scene organization was

chosen by the user. The Sand Table is also written using Performer. The Sand Table is

written to be superimposed over NPSNET as the ModSAF overlay is superimposed over a

map of terrain. The actual code of the Sand Table is part of NPSNET; yet, the Sand Table

is self-contained both in its communications and manipulation of objects. The Sand Table

has only two “hooks” into NPSNET, one being functional and one being graphical. The

functional one is a function call to the main Sand Table program once each time the

NPSNET main function runs through its application program. The graphical hook, which

can be toggled on or off during NPSNET operation, is an added branch which contains the

depiction of all control measures to the NPSNET Performer scene. The Sand Table “uses”

the functionality of NPSNET such as terrain and vehicle display; however, the Sand Table

has no means to manipulate the terrain or vehicles.

44

45

IV. SYSTEM INTEGRATION, DESIGN AND IMPLEMENTATION

A. INTRODUCTION

Having discussed the components used to build the Sand Table, the actual design of

the Sand Table and integration of the components must be considered. The overall

philosophy of incorporating existing functionality into the system should be remembered.

The Sand Table incorporates interaction between NPSNET and ModSAF. This interaction

is accomplished by using the PO Protocol. All of the code unique to the Sand Table is

written as an extension to NPSNET IV.8. An overview of the Sand Table operation will

put the design into a proper context and will manifest many of the operational

characteristics of the Sand Table.

1. Sand Table Operational Overview

Whereas a ModSAF station presents the user with a 2D overlay of the plan being

constructed, the Sand Table could be considered a 3D overlay. The Sand Table places the

user into NPSNET in the desired terrain database. The terrain database is not modified

from that presented in the native NPSNET. The user can be placed in the environment as

a vehicle or in a stealth mode so as not to be seen as a vehicle entity. The user can move

to any part of the terrain database using native NPSNET capabilities which include

keyboard, joystick or spaceball input.

 Full functionality of NPSNET is retained but separated from the functionality of the

Sand Table so vehicle movements, weapons firings, etc. can still be seen if there are vehicle

entities on the battlefield. Similarly, the Sand Table user can behave as a vehicle and can

execute any of the above actions. During a planning operation; however, it would be more

logical to assume a stealth mode and view the battlefield rather than participate on it.

Nonetheless, vehicle functionality is retained in the Sand Table and can be used. A

scenario in which both vehicle and Sand Table functionality could both be used would be

46

a helicopter flying a route over the terrain. Using the Sand Table, the route to be flown

could actually be visualized and followed over Virtual terrain. Whether in NPSNET as a

vehicle or in stealth model all functionality of the Sand Table can be exercised.

Additionally, the Sand Table can be toggled off.

 In the virtual environment the user is given a Sand Table menu, the design of which

will be discussed later in detail. The menu is also shown beginning with Figure 34 (see

Figure 34). Using the menu, the user can select desired attributes for the control measures

such as color or style and construct a control measure at a location on the terrain. The

placement of the control measure is accomplished using the mouse and a 2 1/2D selection

of location on the terrain. The 2 1/2D selection is simple while at the same time offering a

unique solution to picking any terrain in the viewing frustum.

 Once the measure is created, its existence is displayed and maintained and its

attributes are sent to the network for the other Sand Tables using the ModSAF PO Protocol.

ModSAF stations can also receive the PDUs from the Sand Table and can display and

maintain the measures at that station. This offers the ability for workstations which do not

possess the Sand Table software, yet do possess ModSAF, to participate in a planning

problem albeit without a 3D terrain display.

The PO Protocol is used both for intra-Sand Table communication as well as

communication with ModSAF. The Sand Table receives PDUs from other Sand Tables

with attributes of control measures created at other workstations. The Sand Table will then

construct the measure for display, and will maintain and update the measure. Similarly, a

Sand Table can receive a PDU from a ModSAF station running an overlay for the same

terrain as the Sand Table, and the Sand Table will display and maintain the measure. As

depicted in Figure 19, this completes the circle of cross-system compatibility in that any

Sand Table or ModSAF station can create and send a control measure and any other Sand

Table or ModSAF station can receive and display control measures. Further, there is no

distinct ownership of measures, so that when a measure is created by any Sand Table or

47

ModSAF station, any other station can move the measure on the terrain, change any of the

attributes of the measure or delete the measure.

2. SAND TABLE DESIGN OVERVIEW

In order to accomplish the operational behavior and capabilities described above, the

Sand Table can be divided into several smaller elements of functionality. These are:

• Sand Table representation of control measures.

• Maintaining of known control measures.

• Processing of incoming PDU traffic.

• Processing of outgoing PDU traffic.

• Local creation of control measures created at other stations.

• Creation of control measures at Sand Table station.

• Proper display of control measures on the Sand Table.

• Manipulation and movement of control measures on the Sand Table.

SAND
TABLE

STATION

ModSAF
STATIONPDU

SAND
TABLE

STATION

ModSAF
STATION

PDU

PDU

PDU

Figure 19: Possible Sending and Receiving of PO PDUs

48

These areas of functionality are by no means disjoint or mutually exclusive; however,

the delineation does accentuate tasks which must be accomplished by the Sand Table. How

these tasks are accomplished is covered in the following sections. A choice to use an

object-oriented methodology for representation of the control measures was made. The

paradigm seems a natural one since the Sand Table can be expected to maintain several

different types of control measures which contain similar information yet may have

different methods needed to implement needed functionality or slightly different members

unique to the control measure. The PO_MEASURES_CLASS was created as the base

class for control measure objects. It should be noted that while the actual control measures

are implemented using an object-oriented methodology, much of the manipulation of the

measures, when deemed inappropriate to be included as a member function, uses a more

functional based approach.

B. SAND TABLE DESIGN AND IMPLEMENTATION

At the heart of the Sand Table design are two files, po_meas.cc and po_funcs.cc.

po_meas.cc is the actual implementation of the PO_MEASURES_CLASS and contains the

constructors, member functions and destructors. Logically, functions pertaining to the

overall operation and state of the Sand Table are contained in po_funcs.cc which follows a

more functional based paradigm. Functions associated with the actual behavior of the

control measures are contained as members and member functions of

PO_MEASURES_CLASS in po_meas.cc and use the object oriented approach. The

separation of functionality and paradigm is not complete; however, that is the design goal.

The architecture and design of the Sand Table can be understood by considering each of the

elements of functionality described in the design overview and examining how the Sand

Table accomplishes the task.

1. PO_MEASURES_CLASS C++ Class

Sand Table representation of control measures is accomplished using the

PO_MEASURES_CLASS C++ Class. This class encapsulates a control measure’s current

49

state as well as its functionality. Especially useful are polymorphic member functions

involving display of objects as well as communications concerning objects, since the

methods involved are significantly different for each different type of measure. All code

concerning PO_MEASURES_CLASS is contained in po_meas.cc unless otherwise

annotated. The base class and derived class code will be given here and discussed briefly.

The inheritance tree for the base class and derived classes is shown in Figure 20. More

detailed discussion of functionality will be given in the sections concerning the

functionality which the member functions perform. The PO_MEASURES_CLASS base

class is given in Figure 21.

The class was designed to contain the same data as the

SP_DescribeObjectVariant PDU which fully describes a control measure. The

representation and naming may differ; however, the content is paralleled. Note, the

membersdashed , style andcolor correspond directly to fields in the sub-protocol of

SP_DescribeObjectVariant for points, lines and minefields. Similarly,numpoint

corresponds topointCount in SP_LineClass and SP_MinefieldClass . points

PO_MEASURES_CLASS

PO_POINT_CLASS PO_LINE_CLASS PO_MINE_CLASS PO_TEXT_CLASS

Figure 20: PO_MEASURES_CLASS Inheritance Tree

50

corresponds tolocation in SP_PointClass , points in SP_LineClass and

perimeter in SP_MinefieldClass . The specific way the members are represented

and implemented are in the derived classes and will be examined later. It is important to

remember how the state of a control measure is actually represented in three different ways.

The first is how it is stored within the PO_MEASURES_CLASS, the second is how it is

stored in theSP_DescribeObjectVariant PDU and the last is how the measure is

actually displayed with Performer.

Additional members and member functions are also required within the class and will

be discussed briefly.difference andfirstTime are used when dragging and dropping

class PO_MEASURES_CLASS {

protected:
ushort dashed;
ushort style;
PO_COLOR color;
int numpoint;
pfVec3 points[C2_SEGMENTS];
pfVec3 difference;
int firstTime;

public:
PO_TYPE type;
pfGroup* polys;
char* pdu;

PO_MEASURES_CLASS(SP_DescribeObjectVariant, int);
PO_MEASURES_CLASS();
~PO_MEASURES_CLASS();

virtual void update(SP_DescribeObjectVariant, int);
virtual void movePO(float, float);
virtual void dragUpdatePO(float, float);
virtual void dragToNet(float, float);
virtual void updatePDU();
virtual void sendPDU();
virtual pfGroup* make_meas();
virtual void create_text_node(pfVec3, PO_COLOR, char*);

};

Figure 21: PO_MEASURES_CLASS C++ Class

51

control measures over the virtual terrain.type actually identifies which type of control

measure is being represented in an instance of the class.polys is the actual Performer

group which contains the graphical display of the measure. Associated with each control

measure is a PDU which describes the control measure using a

SP_DescribeObjectVariant . This PDU could either be the PDU received from

another station describing a control measure or if the measure was created locally, a PDU

is built to describe that measure. The PDU is stored withpdu and its uses are described

later.

The class has two constructors. The first creates an instance of the class directly from

the PDU received describing the measure. Since the correlation between the fields of the

PDU and the actual member values is so close the constructor consists primarily of direct

assignment of values with appropriate type conversions where needed. One exception is in

the construction of lines. As was covered in the previous chapter, PDUs describing lines

may consist of road segments. This representation is not currently implemented in

PO_MEASURES_CLASS so the conversion of road segments into points is accomplished

using a ModSAF library function.

The functionupdate is used when a PDU is received for an object which already

exists. Its functionality is essentially the same as the constructor with the exception of

creating a new object. Member data are extracted directly from the

SP_DescribeObjectVariant PDU. From the new member data a new Performer

group is created and the old one is destroyed.movePO, dragUpdatePO anddragToNet

are used to drag and drop control measures. Basically,movePO is the drag,

dragUpdatePO is the drop anddragToNet sends the drag to the network. Each type

of control measure employs a very different method to drag and drop. A goal in the Sand

Table design was to allow for effective and intuitive manipulation of control measures as

well as networking the dragging and dropping. The aforementioned functions accomplish

this functionality and will be described in detail later.

52

updatePDU andsendPDU are the methods by which an object sends its state to the

network. This is another case where each object will manage its PDU differently and as

such needs distinct methods for communication. These different methods are primarily the

construction ofSP_DescribeObjectVariant for the particular type ormclass the

measure is.make_meas is used to actually construct the graphical representation of the

control measure in Performer with great difference in the construction of a point as

compared to a line or minefield. The last member function in the base class is

create_text_node whose function is apparent from the name. The control measures

can have text associated with them.create_text_node allows for the creation and

proper placement of text within the control measures.

Each of the control measures is a derived class from PO_MEASURES_CLASS. The

class definitions for PO_POINT_CLASS is given in Figure 22.

class PO_POINT_CLASS : public PO_MEASURES_CLASS {

protected:
char text[1024];
uint direction;
PO_MEASURES_CLASS* textnode;

pfGroup* make_pt(const char*);

public:
PO_POINT_CLASS(SP_DescribeObjectVariant, int);
PO_POINT_CLASS(ushort, PO_COLOR, ushort, uint, char*,

 pfVec3);
~PO_POINT_CLASS();
void update(SP_DescribeObjectVariant, int);
void movePO(float, float);
void dragUpdatePO(float, float);
void dragToNet(float, float);
void updatePDU();
void sendPDU();

pfGroup* make_meas();
}

Figure 22: Derived Class PO_POINT_CLASS

53

The PO_POINT_CLASS has additional members to describe the point. The first is

text anddirection which correspond directly to the fields in theSP_PointClass

variant of theSP_DescribeObjectVariant . textnode is a pointer to additional text

which may be associated with the point.make_pt is an additional function which is used

by make_meas to create the Performer representation of the point.

The class has an additional parameterized constructor. This is used for the creation of

a new PO_POINT_CLASS object from the Sand Table. The parameters are used to pass

style, color, dashed, direction, text and the location of the point. The first constructor with

SP_DescribeObjectVariant as a parameter would be used for the creation of a point

after receiving a PDU from the network.

The next derived class is for line measures. The class definition for PO_LINE_CLASS

is given in Figure 23.

Similar to the PO_POINT_CLASS, the PO_LINE_CLASS has the additional

members which are fields in theSP_DescribeObjectVariant PDU to describe a line

which include thickness , closed , splined , width , beginArrowHead and

endArrowHead . make_meas creates the Performer graphical representation of the

measure. makeQuickLine is used when dragging lines over terrain. The function

provides the Sand Table with a low level of detail Performer representation of the line so it

can be moved in real-time.

PO_LINE_CLASS also has two constructors. The first builds the object from a PDU

received off the network and the second is for local creation of an object on the Sand Table.

The parameters in the second constructor are the member values assigned to determine the

state of the control measure. They include dashed, style, color, thickness, closed, splined,

width, arrow head placement and a pointer to the point locations.

 One additional parameter is included and is namedquick in the actual code body.

This is used to create an instance of a PO_LINE_CLASS measurewithout creating the

Performer graphical representation. This is used when creating a line locally. Creating a

full level of detail line is quite time consuming. This parameter serves as a switch to

54

prevent the actual pfGroup from being made and is used when building lines on the actual

terrain.

The last unique member of the PO_LINE_CLASS is the functionmake_vertical .

This function is used when “picking” lines with the mouse. Its exact purpose and

functionality will be discussed in the next chapter.

The next derived class is for minefields. The declaration for this class is given in

Figure 24.

The first seven members of the class again correspond directly to the

SP_DescribeObjectVariant PDU fields and represent the same data concerning the

state of the minefield. Recalling (see page 38) that a minefield is an actual simulated entity,

class PO_LINE_CLASS : public PO_MEASURES_CLASS {

protected:
ushort thickness,

closed,
splined,
width,
beginArrowHead,
endArrowHead;

pfGeode* makeQuickLine();

public:
PO_LINE_CLASS(SP_DescribeObjectVariant, int);
PO_LINE_CLASS(ushort, ushort, PO_COLOR, ushort, ushort,

 ushort, ushort, ushort, ushort, int,
 pfVec3*, ushort);

~PO_LINE_CLASS();
void update(SP_DescribeObjectVariant, int);
void movePO(float, float);
void dragUpdatePO(float, float);
void dragToNet(float, float);
void updatePDU();
void sendPDU();

pfGroup* make_meas();
pfGeode* make_vertical();

}

Figure 23: Derived Class PO_LINE_CLASS

55

some of the members such asmunition are not currently used in the Sand Table.

textnode is a pointer to text which may be associated with the minefield and

makeQuickMine has similar functionality tomakeQuickLine in creating a low level of

detail representation of the measure.

Similar to the constructor for line and point measures, PO_MINE_CLASS has a

constructor for both creation using a PDU or values created locally. The additional member

functions are similar in function to the functions of the other derived classes and will be

described in detail later.

The final derived class is PO_TEXT_CLASS and is provided in Figure 25. Text can

be found by itself on the Sand Table or with other control measures giving amplifying

information. Like the other control measures, the members of PO_TEXT_CLASS closely

class PO_MINE_CLASS : public PO_MEASURES_CLASS {

protected:
ushort minefieldType;
uint munition;
ushort size,

rowWidth,
density;

pfVec3 origin;
char text[1024];
PO_MEASURES_CLASS* textnode;
pfGeode* makeQuickMine();

public:
PO_MINE_CLASS(SP_DescribeObjectVariant, int);
~PO_MINE_CLASS();
void update(SP_DescribeObjectVariant, int);
void movePO(float, float);
void dragUpdatePO(float, float);
void updatePDU();
void sendPDU();

pfGroup* make_meas();
}

Figure 24: Derived Class PO_MINE_CLASS

56

reflect theSP_DescribeObjectVariant PDU. The class contains only one constructor

which takes theSP_DescribeObjectVariant PDU as a parameter. In the current

version of the Sand Table, text can only be received from a ModSAF station. Text can

either be received as an object or it can be embedded in an object as was seen with points.

create_text_node andmake_meas actually construct and place the text.

2. Maintaining of Known Control Measures

By its title, this task seems to conflict with the goal in the design of the Sand Table to

utilize ModSAF to maintain control measures. However, in actuality, the task does not

conflict. The Sand Table must maintain a local database which represents the current

control measures on the Sand Table for its own use. This is needed for the Sand Table to

properly display the measures and be able to modify the measures. Where the Sand Table

doesnot manage the objects is in the repeated sending ofSP_DescribeObjectVariant

PDUs upon object creation, the sending of subsequentSP_ObjectsPresentVariant

class PO_TEXT_CLASS : public PO_MEASURES_CLASS {

protected:
SP_TextSize size;
short length;
char alignment;
SP_PointLocation location;
short horizontalOffset;
short verticalOffset;
SP_ObjectID associatedObject;
short associatedPointNumber;
char text[1024];

public:
PO_TEXT_CLASS(SP_DescribeObjectVariant, int);
~PO_TEXT_CLASS();
void update(SP_DescribeObjectVariant, int);
void create_text_node(pfVec3, PO_COLOR, char*);
pfGroup* make_meas();

};

Figure 25: Derived Class PO_TEXT_CLASS

57

PDUs which list the objects in the database nor the rebroadcast of

SP_DescribeObjectVariant PDUs when other simulators send requests for object

descriptions. (see Figure 9)

 po_funcs.cc contains functions which maintain the overall state of the Sand Table.

Within po_funcs.cc the database of objects is stored as an array which contains all of the

control measures which the Sand Table has current information on and is currently

displaying. To be in the array, either the measure was created locally on the Sand Table or

a SP_DescribeObjectVariant PDU was received from another simulator.

The array containing the database consists of objects of classpoLookUp which consist

of a key containing an object identifier of typeSP_ObjectID and a pointer to an object of

class PO_MEASURES_CLASS. When new measures are added, their keys and pointers

are added at the end of the array. When deleted, they are removed from the array and the

array is then compressed to fill the hole. The simple array structure was determined to be

a sufficient data structure to contain the control measures since the number of expected

control measures in a Sand Table problem would be relatively low. If key lookup proved

to be a significant slow-down, thepoLookUp objects could be stored in a more

sophisticated data structure.

3. Processing of Incoming PDU Traffic

Within po_funcs.cc is the functionpo_net_read . This function reads PDUs of type

SP_PersistentObjectPDU from the network and, after checking that the PDU has the

proper exercise and database identifiers, calls the appropriate function within po_funcs.cc

to process the PDU. po_funcs.cc currently processesSP_PersistentObjectPDU

variants of typeSP_SimulatorPresentVariant , SP_DeleteObjectsVariant and

SP_DescribeObjectVariant with other variants being disregarded at this time. The

processing of incoming PDUs is shown in Figure 26. All processing functions referred to

below are contained in po_funcs.cc.

58

Upon receipt ofSP_SimulatorPresentVariant PDUs, the Sand Table will

capture a “slave simulator” if a capture has not already occurred. The function which

accomplishes the capture is namedcaptureSim . The purpose of capturing a simulator is

to facilitate using ModSAF stations to manage control measures. The

SP_SimulatorPresentVariant PDU provides the simulator site, host and simulator

type. The type is checked to ensure that the PDU is not from another Sand Table (see page

27) and if not, objects created at the Sand Table will be passed to the “slave simulator.”

This is shown in Figure 27.

Upon receipt ofSP_DeleteObjectsVariant PDUs the Sand Table compares the

list of objects to be deleted as specified in the PDU with the Sand Table’s database of

objects. The deletion function within the Sand Table is nameddelete_object . The

Persistent Object

PDU

po_net_read

Check database and
exercise. Process.

captureSim delete_object process_pdu

Simulator
Present Variant

Delete Objects
Variant

Describe
Object Variant

Figure 26: Processing of Incoming PDU Traffic

59

function uses theobjectID from the array ofSP_ObjectIDWorldStateIDPair in the

PDU as a key in locating the object within the object database of the Sand Table. This is

shown in Figure 28.

The receipt of aSP_DescribeObjectVariant calls the functionprocess_pdu

which is slightly more complicated but still straightforward. As pointed out in the previous

chapter, theSP_DescribeObjectVariant PDU can be used for both creation and

captureSim

Simulator
Present Variant

Site, Host and
Simulator Type

are in PDU

Simulator
Already
Captured

Simulator is
A Sand
Table

Disregard
PDU

“Slave” Has Not
Been Captured.

Simulator is Not a
Sand Table

Use This
Simulator
as “Slave”

Figure 27: Processing of Simulator Present Variant

60

modification of control measures. Further, when an object is created the simulator owning

the measure will, in accordance with the PO Protocol, broadcast

SP_DescribeObjectVariant PDUs every 30 seconds for five minutes. Thus, the PDU

received by the Sand Table could be a new object, a modified old object or a duplicate

SP_DescribeObjectVariant PDU of an old object.

 Within process_pdu theobjectID of the control measure being described in the

PDU is searched for within the object database of the Sand Table. If found, the PDU

describes an old object. Included as a member within the PO_MEASURES_CLASS is a

string representation of the PDU which created or last updated the measure. The string

representation of the old PDU is then compared with the incoming PDU. If they match,

the incoming PDU is a duplicate and is ignored. If different, a member function of the

PO_MEASURES_CLASS,update , modifies the control measures attributes and changes

delete_object

Delete Objects
Variant

Database of Control
Measures Being

Maintained

PDU has list
of

objectID s

Loop through
objectID s

comparing against
database keys

Match Found. Remove
Measure From Array and

Pack Array

Figure 28: Processing of Delete Objects PDU

61

its display if necessary. The functionupdate takes the actual PDU as a parameter to

update the object’s members. The function exhibits polymorphic behavior and is used with

all types of control measures.

If the object contained in theSP_DescribeObjectVariant PDU is not found in the

local database the Sand Table adds the measure. The sub-protocol of the PDU is examined

to determine the type ormclass of the control measure and the appropriate constructor is

used to create an object of type PO_MEASURES_CLASS. A pointer to the object and the

SP_ObjectID are then placed in the array which contains the database of the current

control measures known by the Sand Table. The possible flows of the

SP_DescribeObjectVariant PDU are shown in Figure 29.

4. Processing of Outgoing PDU Traffic

Due to the limited management nature of the Sand Table, outgoing traffic is equally

limited and concise. Outgoing PDUs from the Sand Table can be put into two categories,

the first being “handshaking” with ModSAF and the second being PDUs concerning

objects. The first category is considered to be the responsibility of the entire Sand Table

and as such, the functions participating are contained in po_funcs.cc which controls the

state of the Sand Table. The second category of functions are specific to the actual objects

and as such are contained as member functions within PO_MEASURES_CLASS.

a. Handshaking

As soon as a Sand Table initially opens its network connection, the Sand Table

takes two actions to begin “handshaking” with ModSAF. The first action is to send a

SP_SimulatorPresentVariant PDU. The purpose is to alert a ModSAF station to the

Sand Table’s presence so that the Sand Table can learn of the objects currently present in

the database. Recalling the PO Protocol, when a new simulator is detected the owners of

persistent objects begin transmittingSP_DescribeObjectVariant PDUs for all owned

objects so new simulators can learn the objects present (see Figure 6). After sending the

SP_SimulatorPresentVariant PDU, the Sand Table then processes the

62

process_pdu

Database of Control
Measures Being

Maintained

Compare
objectID against

database keys

PDU has
objectID of

Measure

Describe Object
Variant

Measure Found in
Database

Measure Not Found
in Database

Old Object New Object

Create New
Measure from

the PDU.
Add to

Database

Compare PDU with
pdu stored in the

Measure

pdu Member in
PO_MEASURES_CLASS

If Same
PDU is a
Duplicate

Disregard
PDU

If Different PDU,
Measure Has

Been Modified

Update Member
Values of the

Measure

Figure 29: Processing of Describe Object PDU

63

SP_DescribeObjectVariant PDUs from all ModSAF stations present and builds a

local database as described above for display and manipulation of the objects.

The functionsendSimPresent initiates the above actions by creating a

SP_PersistentObjectPDU (see Figure 4) of the simulator present variant (see Figure

5). A default protocol version is supplied to fill theversion field of the PDU. Database

and exercise identifiers are set to user settings on start-up and are used to fill the appropriate

PDU fields. The Sand Table fills thesimulator field of the PDU with its host’s host and

site numbers.simulatorType is set to unknown and thedatabaseSequenceNumber

is initialized to zero. All other fields are initialized to zero and the PDU is sent.

The second “handshaking” action taken is to ensure that the Sand Tables and any

ModSAF stations are displaying the overlay named “NPSNET”. The action is primarily

for the ModSAF stations which only display overlays selected by the user. Any object

created must include the overlay it is assigned to in order to be displayed. The Sand Table

is designed to only display the “NPSNET” overlay, nonetheless, it must be coordinated

with ModSAF.

Initially, the Sand Table was designed to listen to the network for a

predetermined time to determine if an “NPSNET” overlay was already present. This was

done by examiningSP_DescribeObjectVariant PDUs of the overlay variant. If an

“NPSNET” overlay was detected, it was captured and used in subsequent

SP_DescribeObjectVariant PDUs. If, however, an overlay was not captured, the

Sand Table would create an overlay. The Sand Table would use its own site and host in the

objectID field of theSP_DescribeObjectVariant PDU; however, theowner field

would be filled with one of two possibilities.

If a “slave” simulator had been captured prior to building the overlay, it would

be given ownership of the overlay. If no simulator capture had occurred, the Sand Table

would assume ownership. The Sand Table would then continue to try to capture a

simulator and as soon as it did, the Sand Table would pass ownership of the overlay to the

“slave” simulator. This method is shown in Figure 30.

64

This method of handshaking, while seeming initially correct, was determined to

be unacceptable due to the existence of timing dependencies. A race condition existed in

Loop
Looking for
“NPSNET”

Overlay
PDU

Overlay was
Found

Use this
Overlay’s
objectID

Overlay not found
in Allotted Time

Create a New
Overlay Using Local

Site and Host for
objectID

If “Slave”
Simulator Has
Been Captured

Assign Ownership
of Overlay to

“Slave”

If No “Slave”
Simulator Has Been

Captured

Assume Local
Ownership of

Overlay

Continue Looking
For “Slave”
Simulator

When “Slave”
Captured

Figure 30: Incorrect “Handshaking” Protocol

65

the order and timing in which simulators were brought on line.

If two Sand Tables were brought up at the same time, it was possible that neither

would find an overlay present at which time each would create its own overlay using their

own site and host information for overlay initialization. As soon as a “slave” simulator was

captured, ownership ofboth “NPSNET” overlays would be passed. This created an

ambiguity in that two (or more)different overlays named “NPSNET” would exist. If this

case existed, each Sand Table would be using its own exclusive overlay. Further, if objects

were created in ModSAF, they would potentially have to be assigned to the multiple

ambiguous “NPSNET” overlays. This condition is shown in Figure 31.

The second method for overlay “handshaking” proved to be successful and

actually simpler. With this method an overlay is created immediately upon start up by all

Sand Table stations. However, thesame overlay is created. In order to accomplish this the

objectID of the overlay is filled with a dummy site, host and object number, which is the

same for all Sand Table stations. TheSP_DescribeObjectVariant PDU is sent to the

net on start up. This creates the possibility of many duplicates of the same overlay on the

network; however, this is no problem since the PO Protocol already uses and handles

duplication ofSP_DescribeObjectVariant PDUs. The final issue in this method is

ownership of the overlay and this is dealt with in a manner similar to that used in the

original flawed overlay method.

Upon creation of the overlay with dummy defaults ownership must be

determined. If the Sand Table has captured a “slave” simulator ownership is assigned to

that “slave.” The revised overlay “handshake” is shown in Figure 32. The race condition

situation with the revised protocol is shown in Figure 33.

If, however, a capture has not occurred, the Sand Table assumes ownership and

will rebroadcast theSP_DescribeObjectVariant PDUs describing the overlay. Upon

capture of a simulator, ownership will be transferred to the ModSAF station and the Sand

Table will no longer rebroadcast PDUs. If, by chance, two Sand Tables capture different

66

“slave” simulators, ownership will be sorted out by the PO Protocol as discussed in the

previous chapter (see page 32).

Sand Table A Sand Table B

Look for
“NPSNET”

Overlay
PDU

Overlay not found
in Allotted Time

Overlay not found
in Allotted Time

Create a New
Overlay UsingSand

Table A Site and
Host forobjectID

Create a New
Overlay UsingSand

Table B Site and
Host forobjectID

Send PDUs
With Overlay

ModSAF station sees two
“NPSNET” overlays with

differentobjectID s.
Assumes twodifferent

overlay. Each Sand Table
putting objects in separate

overlay.

?

Figure 31: Overlay Race Condition

67

b. Object messages

Once handshaking has been completed the Sand Table is able to send PDUs

pertaining to the actual objects in the planning problem. This is one of the most important

aspects of the Sand Table in that it enables the Sand Table to transmit messages concerning

the creation, placement and manipulation of objects which is a major motivation for

creating the Sand Table. Since the control measures are of different types it made sense for

communications relating to an object to be a member function within the class of that

object.

All communications sent by objects utilize PDUs of type

SP_PersistentObjectPDU . Within each derived class of PO_MEASURES_CLASS

Create a New
Overlay Using

Dummy Site and
Host forobjectID

If “Slave”
Simulator Has
Been Captured

Assign Ownership
of Overlay to

“Slave”

If No “Slave”
Simulator Has Been

Captured

Assume Local
Ownership of

Overlay

Continue Looking
For “Slave”
Simulator

When “Slave”
Captured

Figure 32: Correct “Handshaking” Protocol

68

are two functions,updatePDU and sendPDU , which communicate the current state of an

object to the network via aSP_PersistentObjectPDU . The first function,updatePDU ,

loads the member values describing the object into aSP_DescribeObjectVariant .

The second function,sendPDU, completes the job by building the rest of the

SP_PersistentObjectPDU and putting the PDU on the network.

updatePDU can both update the stored PDU for an object or it can actually

create a PDU for a new object. The function first checks to see if the memberpdu is NULL.

Recall (see page 50),pdu stores the most recentSP_DescribeObjectVariant PDU for

the object. Ifpdu is in fact NULL, there exists no PDU describing the object. This could

Sand Table A Sand Table B

Create a New
Overlay Using

Dummy Site and
Host forobjectID

Create a New
Overlay Using

Dummy Site and
Host forobjectID

Send PDUs
With Overlay

ModSAF station sees one
“NPSNET” overlay with

sameobjectID s.

Figure 33: Corrected Race Condition

69

occur from the local creation of an object which needs a PDU to be built for it. If this is the

case, storage forSP_DescribeObjectVariant is allocated and the header portion of the

PDU is filled. databaseSequenceNumber is set to zero, and theobjectID is set using

the host and site of the Sand Tables workstation. A number unique to that workstation is

assigned as the object number portion of theobjectID field. The owner is set to the site

and host of the “slave” simulator if one has been captured.sequenceNumber is set to

one,mclass is set corresponding to the actual type of object for which the PDU is being

built and in the headeroverlayID is set to the identifier of the “NPSNET” overlay. After

these portions of the PDU have been created the pointer to the new

SP_DescribeObjectVariant is assigned to the memberpdu .

updatePDU could also find that the memberpdu is not NULL, meaning that a

PDU describing the object is already present. In this case a new

SP_DescribeObjectVariant need not be created; rather, the currentpdu will be

modified. After checkingpdu , the functions then incrementssequenceNumber .

Recalling the PO Protocol (see page 32), this increment will force the other simulators to

accept the SP_DescribeObjectVariant . Lastly, the actual member values of the

object, such as color, style and dashed, are put into the corresponding fields of the PDU.

The constructor already showed this correspondence and filling the PDU is a

straightforward assignment of values with exact assignment depending on the variant of the

sub-protocol. It should be noted that the actual member values were created or modified

elsewhere and the PDU is loaded with the current values of the members. Upon exit from

the function the memberpdu has the most recent PDU describing the object.

Recalling the SP_PersistentObjectPDU structure (see Figure 4), the

SP_DescribeObjectVariant is a variant within the whole PDU. So whileupdatePDU

creates the correct variant portion, the rest of the persistent object PDU must be

constructed. sendPDU finishes this packaging and sends the PDU on the network.

sendPDU creates a newSP_PersistentObjectPDU . Header information such as

version , exercise and database are set with values which are constant throughout

70

the running of a Sand Table.kind is set toSP_describeObjectPDUKind . Next, the

variant portion of the PDU is set. This is accomplished by loading the contents of the

memberpdu into the variant portion of theSP_DescribeObjectVariant PDU. Lastly,

the length of the PDU is set and the PDU is sent to the network. Normally, when changing

an object, firstupdatePDU would be called to makepdu current, thensendPDU would be

called to send the PDU. However, if in the future the Sand Table managed more of its

objects,sendPDU could be used at any time to send the current state of an object.

5. Local Creation of Control Measures Created at Other Stations

Much of the local creation of control measures created at other stations was covered in

the discussions of the PO_MEASURES_CLASS, local object maintenance and receiving

incoming PDUs. However, now that each of the components in the creation of objects has

been discussed an overall view of the process can be seen. Upon receipt of a PDU, which

has been determined not to currently exist in the local database, a new object of a derived

class of PO_MEASURES_CLASS is created. The key to the creation is close correlation

between the contents of the PDU and the actual members within the class of the object

being created. With this correlation the constructor uses the actual

SP_DescribeObjectVariant portion of the PDU and extracts the object’s state

information directly. After creation using the constructor, the object is put into an array

containing keys and pointers to PO_MEASURES_CLASS objects. Additionally, the

graphical representation of the measure is added to the NPSNET scene graph. Subsequent

manipulation, changes or deletions are handled polymorphically.

6. Creation of Control Measures at Sand Table Station

The creation of objects on the Sand Table is accomplished using a Cone Tree menu

system. The Cone Tree system will be described here only as it relates to the creation of

control measures on the Sand Table with a detailed examination of the menu

implementation being covered in Chapter V. The Cone Tree menus are 3D trees which are

71

oriented vertically and can be placed on the terrain. At the end of each branch an icon is

present representing a menu choice. Figure 34 shows a cone tree with base level icons only.

Selection of one of the icons on a tree branch will expand the tree upward by one level.

When an icon is selected, the icon, along with the branch leading to the icon, are

highlighted giving an indication as to what icon has been selected. This can be seen in

Figure 35, where a general point has been selected and the menu has been expanded by one

level.

The expansion will proceed by what action the user is trying to accomplish, for

example building a point. The user will continue selecting icons up the tree until a

terminator has been reached. Figure 36 shows a check mark at the top of the tree expansion

which is a possible terminator. Once a terminator has been reached the user will select it

and the choices the user made in expanding the tree will be implemented.

Figure 34: Cone Tree Menu

72

Creation of objects is directly linked with the Cone Tree menu system. The system

currently allows for the creation of points, open lines and closed lines. Icons for each of

these measures can be seen in Figure 34 with the point icon being the military symbol for

a general or check point (square atop a triangle), the open line being the line strip

(backwards deformed letter “C”) and the closed line loop being the irregular shaped

polygon. How objects are created can best be explained by following examples of creation

with the menu.

Figure 35: Menu Expanded One Level

73

a. Point Creation

To create a point the user would select the general point at the lowest level of the

menu tree. The menu would then expand offering three choices which represent the point

style. This was shown in Figure 35. The next step is to select one of the point measures to

be built. Figure 37 shows the selection of a coordinating point (circle with a “X” in it) and

the next level of expansion.

At this level of expansion the user is presented with several circles each a

different color. Selection of one of the color panels expands the menu to a terminator which

is shown in Figure 38.

Figure 36: Expansion of Menu to Terminator

74

The final selection of the terminator then places a point of the selected type and

selected color at the point where the menu base intersects the terrain. The menu then

collapses and disappears. Having outlined the creation of an object from the graphical

standpoint, the object creation and network aspects can be more easily understood.

Figure 37: Second Expansion Building a Point

75

The functions which actually build control measures locally on the Sand Table

are contained in the file po_build.cc. Also contained in po_build.cc are a set of state

Figure 38: Expansion to Terminator Building a Point

76

variables which are global to po_build.cc. These variables are shown in Figure 39.

These variables correspond directly to member names within

PO_MEASURES_CLASS and the fields ofSP_DescribeObjectVariant . These

variables include the attributes which describe each of the types of control measures. They

contain the values of the control measure currently being built by the menu system. In

order to understand the variables’ use, the Cone Tree menu must be further examined.

Upon selection of an icon from the menu system, the icon and its branch are

highlighted and the tree is expanded a level. However, this is only the graphical aspect of

an icon selection. In addition to these actions, with each selection of an icon a callback

function is invoked. These callback functions are what actually enable the menu system to

carry out expected actions for icon selection. During the creation of an object these

callback functions are used to set the state variables described above. At each level of the

PO_TYPE buildType;
PO_COLOR buildColor;
pfVec3 points[C2_SEGMENTS];

origin;
int numpoints = 0,

direction = 0,
munition,
detonator;

ushort dashed = 0,
style,
thickness,
closed,
splined,
width,
beginArrowHead = 0,
endArrowHead = 0,
minefieldType,
size,
rowWidth,
density;

Figure 39: State Variables in po_build.cc

77

menu some attribute of the object is being set in the state variables via the callback

functions.

Using the example of creating a point, when the user selects the general point at

the lowest menu level, the Sand Table is informed that the construction of a point has

begun. This is done by the callback associated with the general point icon which sets the

state variablebuildType to PO_POINT which is one of the types of control measures.

When the user selects the coordinating point at the next level, the state variablestyle is

set via the icon’s callback toSP_PScoordinating which defines one of the point styles

in ModSAF. Lastly, when a color panel is chosen, the state variablebuildColor is set in

the color panel’s callback. Note that only those variables which are applicable to a

particular control measure are set. The only needed state variable which was not set

directly by user icon selection is the actual location of the point. This state variable is

contained inpoints . Since, when creating a point, the stem of the menu is the location at

which the point will be placed,points is continuously updated whenever the menu is

moved. Each time the menu is moved (which may be in the middle of point construction)

the functionpassMenuPosition is called. This function updatespoints accordingly.

After each of the state variables is set the menu expands to the terminator icon which itself

has a callback function namedbuildItCB . The expansion of the tree and associated

actions in building the measure are given in Figure 40 and Figure 41.

Within thebuildItCB callback function the control measure is actually built.

The function first checksbuildType which was set during menu expansion and indicates

the type of measure to be created. Upon determination of type, the appropriate constructor

is called. State variables are sent as constructor parameters and the measure of

PO_POINT_CLASS is created. Having created the measure as a PO_POINT_CLASS, the

graphical representation of the control measures must be added to the Performer scene tree.

Within the PO_POINT_CLASS object is the memberpolys which contains the Performer

pfGroup of the object. This pfGroup is added to the Sand Table scene. Next, the newly

created object must be put into the Sand Table control measure database. Recalling this

78

1. Menu Placement.
passMenuPosition
places terrain position in
points state variable.

2. Build Point Icon Selected.
State variablebuildType set
via icon’s callback to
PO_POINT.

3. Coordinating Point Icon
Selected.

State variablestyle is set via the
icon’s callback to
SP_PScoordinating.

Figure 40: Actions in Building a Measure

79

from the above sections (see page 56), to be included in the database an object needs a

pointer to a PO_MEASURES_CLASS which is created using the constructor and a key

which consists of theobjectID .

The objectID is constructed using the site and host of the Sand Table

simulator. The object number portion ofobjectID is selected from the variableobject

which is contained in po_funcs.cc. With this dataobjectID is created and the measure is

inserted into the database of control measures. The final action needed in the creation of

4. Color Panel Selected
State variablebuildColor is set
in the color panel’s callback.

5. Terminal Icon Selected
State variables have all been set.
Call buildItCB and build point.

Figure 41: Actions in Building a Measure (Continued)

80

the object is sending the new object description to the network. This is accomplished by

updatePDU and sendPDU which were both described above (see page 67).

b. Line Creation

The creation of linear control measures differs from that of point creation only

in the graphical building of the line and the actual constructor used to create the measure.

The obvious difference arises in that a line consists of many points rather than just one. The

construction of a line can best be understood by again following an example of building a

line using the menu. From the base level of the Cone Tree menu, the open line icon is

chosen. The menu expands one level, the open line icon and branch are highlighted and the

callback function setsbuildType to PO_LINE. Additionally, a flag is set which enables

the selection of locations on the terrain. This flag is in po_build.cc and is named

addingLine . This expansion can be seen in Figure 42.

At the next level in the Cone Tree menu are a selection of line segments each of

different thickness. Selection of a thickness determines how thick the line being

constructed will be. Selecting a line thickness expands the menu and setsthickness via

the callback function. The expansion is shown in Figure 43.

The next level of expansion is again a selection of circles each containing a

different color. The selection is the same as with point construction expanding the menu

to the terminator and settingbuildColor . This is shown is Figure 44.

The construction of a line diverges from that of a point at this time. When

addingLine is set, the left mouse button is enabled to pick terrain. When the user clicks

on terrain a small cone is placed on the terrain at the location selected to indicate the point.

When more than one point is selected a line is drawn over the terrain connecting the points.

This is shown in Figure 45.

As each additional point is added the line is extended to include the point. Each

of the cone point indicators can be dragged and dropped to change the position of the line.

Further, the entire line can be dragged and dropped to a new location. These graphical

81

concepts will be covered in Chapter V. The important characteristic to be considered here

is the actual building of the line. As each point is placed on the terrain, the location is put

into the state variablepoints and the state variablenumpoints is incremented. When

the terminator is selectedbuildItCB is again called. Based onbuildType the

constructor for a PO_LINE_CLASS is invoked. The measures graphical representation

and PO_MEASURES_CLASS representation are added into the Sand Table in the exact

same way the point measure was added. Similarly,updatePDU and sendPDU are called

to send the new control measure to the network.

The creation of a closed line and minefield are the same as the construction of a

line with the exception of the last point being connected to the first point of the line. Lastly,

the creation of text from the Sand Table is not available in the current implementation.

Figure 42: First Expansion Building a Line

82

7. Proper Display of Control Measures on the Sand Table

The actual display of the control measures is accomplished by creating a Performer

pfGroup for each control measure known by the Sand Table. Within each

PO_MEASURES_CLASS object is the memberpolys which contains a pointer to the

pfGroup representing the control measure. These pfGroups are then added toL_po_meas

which is contained in po_funcs.cc.L_po_meas is a pfGroup itself and is the parent of all

control measures in the scene graph.

The display of the control measures can be toggled by using the function

toggle_po_display . When the function is called, it determines whether or not the

Figure 43: Second Expansion Building a Line

83

control measures are currently being displayed. If so, the function

po_display_measures is called and if not the functionpo_hide_measures is called.

These functions are straightforward withpo_display_measures addingL_po_meas to

the NPSNET scene graph andpo_hide_measures removing (but not deleting)

L_po_meas from the scene graph.

The adding ofL_po_meas to the NPSNET scene graph and the adding of the pfGroups

represented in the memberpolys is the only graphical connection between the Sand Table

and NPSNET IV.8. The additional pfGroups and pfGeodes which represent the control

Figure 44: Expansion to Terminator Building a Line

84

1. Click Terrain With
Mouse.

Location is put inpoints .
Vertical cone placed on
terrain to mark point of line.

2. Subsequent Clicks.
Location is put in
points . Line connects
cone points. Line follows
terrain elevations.

3. Line Complete.
At this time user would
click terminator on
menu. Points would be
saved, cone markers
would disappear, line
would remain.

Figure 45: Point Indicator During Line Construction

85

measures are part of the normal Performer graph traversal. This is not meant to say that the

graphical portion of the Sand Table is trivial; rather, it should be noted thatL_po_meas is

the only “hook” into the NPSNET scene graph. Further, no changes in the control measures

will ever have an effect aboveL_po_meas in the scene. The actual graphical

implementation of the Sand TablebelowL_po_meas is very extensive and will be covered

in detail in Chapter V.

8. Manipulation and Movement of Control Measures on the Sand Table

The final task which the Sand Table must accomplish is the moving and manipulation

of control measures. Control measures can be moved on other simulators and their

movement is reflected on the Sand Table. Similarly, objects can be dragged and dropped

on the Sand Table and PDUs will be broadcast to reflect the movement. The movement of

an object by another station will be seen at the local Sand Table only through the receipt of

SP_DescribeObjectVariant PDUs. The receipt of these has already been considered

but basically the member values of the object will be updated to reflect any change which

the PDUs may indicate. The member functionupdate will use the incoming PDU to

change any members of the object needing update. Any geometry changes will also be

accomplished with modification of thepolys pfGroup.

The manipulation and movement of control measures by the local Sand Table is a

much more intensive task. Currently only movement of the control measures is

implemented in the Sand Table. In this case the factors to be considered were the “picking”

of control measures, the dragging of control measures, the dropping of control measures,

the updating of the PO_MEASURES_CLASS object, the updating of

SP_DescribeObjectVariant PDUs and the sending of

SP_DescribeObjectVariant PDUs.

The updating and sending of the PDUs is accomplished in the same way the PDU was

created when a new object was created on the Sand Table. This is accomplished by

updatePDU and sendPDU which were both described earlier (see page 67). The

86

updating of the PO_MEASURES_CLASS object is accomplished as part of the dropping

of the control measure. When dropped the memberpoints (see page 50) is modified to

reflect the dragging of the measure. The memberpolys is also changed to reflect the new

terrain over which the measure is located. Currently, the measures can only be dragged so

only points andpolys change. The picking, dragging and dropping of measures will be

covered in more detail in Chapter V.

C. SUMMARY

This chapter gave an operational and design overview which highlighted basic

elements of functionality which were designed and constructed. The Sand Table

representation of control measures was discussed with the examination of the

PO_MEASURES_CLASS C++ class which is used to maintain objects. The maintaining

of the database of control measures utilizing an array was examined. The receipt and

processing of PDUs using functions in po_funcs.cc was examined to include capturing of

Simulator Present PDUs, Delete Object PDUs and Describe Object PDUs.

The sending of PDUs utilizing the polymorphic member functionsupdatePDU and

sendPDU was examined. Also, the sending of “handshaking” PDUs was discussed. The

local creation of control measures was examined using examples of object creation using a

cone tree menu system. Lastly, the display, manipulation and movement of control

measures was introduced and will be covered in more depth in Chapter V.

87

V. CONTROL MEASURE VISUALIZATION AND MANIPULATION

A. INTRODUCTION

Having discussed the major design and implementation considerations, the specific

graphical considerations will now be examined. A goal of the Sand Table was the intuitive

placement and manipulation of control measures which will depict the plan being

constructed (see page 7). While much of the control of PDUs and maintenance of control

measures has been covered, the actual 3D graphical interface aspects of the Sand Table

must now be examined.

In the current version of the Sand Table points, lines and minefields can be visualized

and manipulated. Each will be examined and detail; however, some higher level design

characteristics must first be considered. Placement of measures was chosen to correspond

to a logical and visually appealing method. Measures placed on the terrain are easily seen

yet do not overwhelm the scene. This is accomplished by making the measures the correct

size and by appropriately orienting the measures with regards to the terrain.

Point control measures are placed “on the ground.” This is the most logical choice

since a point control measure will refer to a specific point on the terrain. The points are 2D

objects which are “billboarded” to face the viewer. Care must be taken so that the points

will not sink into the ground nor hover over the ground. The “sinking” would be visually

unappealing and the “hovering” would create an ambiguous cue as to where the measure

was actually located over the ground. While the objects are represented with a 2D icon the

visualization is sufficient and appealing. As was stated earlier (see page 17) the symbols

used are already defined and have been used on overlays and other two dimensional

methods of portraying control measures. It is questionable whether a 3D representation of

these familiar icons would better the visualization. Where the Sand Table enhances the

display is that the familiar 2D icons arepresented and manipulated in the 3D virtual

88

environment. The “billboarding” ensures that the familiar icon view is always oriented

correctly towards the viewer. Further, as the distance between the viewer and icon changes,

the size of the icon behaves as expected in that it becomes smaller when viewed from a

greater distance. The result of this design is that there is no ambiguity as to what military

symbol the icon represents nor is there ambiguity as to the exact position of the point on

the terrain. This is shown in Figure 46. How this visualization is actually accomplished

will be covered below in Section B.

The two linear control measures, lines and minefields, are represented in a different

manner. Unlike points, lines and minefields currently “hover” over the terrain. While this

created an ambiguous location in the case of a point this is not the case for linear measures.

This is due to the nature of a linear control measure which allows the eye to “fix” a line

over terrain. The line is taken as a whole and the mind correctly correlates the linear

Figure 46: Point Placement on Terrain

89

measure’s position. This is also enhanced with the way lines are placed over the terrain.

In the Sand Table linear control measures are “terrain following.”

Contrasting a point which is placed at a single point hence, a single elevation, a linear

control measure consists of many points and varying terrain altitudes. The linear control

measures are placed to follow these elevations with the height at which the measure

“hovers” being constant. The linear measures follow the contours and folds of the terrain.

This is shown in Figure 47. Using a physical analogy, the linear measures are placed like

an electrical power line over hilly terrain. The power line maintains a constant height above

the ground. The contouring allows for unambiguous placement of the lines with the terrain

itself giving cues as to where the linear measure is located. The placement also allows for

better visibility of the line from a variety of altitudes and viewer orientations. Lastly, the

placement eliminates the need to deal with Z-buffer problems which would occur if the line

and terrain were placed at the same position.

Linear Measure
Over Terrain

Figure 47: Line Placement Over Terrain

90

Once visualized, the Sand Table must also have the means to manipulate the control

measures. Various options were considered. One option was using a 3D mouse cursor to

select positions on the terrain and select control measures themselves. The cursor would

“float” through the air above the terrain appearing as a 3D object with size and orientation

being based on viewer perspective. This was deemed unnecessarily complicated in the

initial application of the Sand Table since all of the mouse functionality would have the

natural constraint of either referencing terrain or actual objects. However, this should not

suggest that such a system will not be of utility in future development. Of particular note

would be a stereoscopic application, in which a true 3D mouse cursor would have to be

revisited.

The method actually implemented was a 2 1/2D mouse cursor system. The term “2

1/2D” refers to the fact that the mouse only moves in two dimensions; however, its

placement on terrain or on an object gives the third dimensionimplicitly. This is shown in

Figure 48.

The use of the 2 1/2D cursor offers several advantages. The first is its simplicity. The

user need not learn any special mouse functionality. The mouse and its cursor, functions

as a user familiar with a PC or workstation mouse expects. Next, by using the mouse in

this manner, programming of mouse input is simplified by using Iris GL’s existing mouse

functionality which includes determining mouse screen position and mouse button status.

The last benefit of using the 2 1/2D mouse is the ability to use Performer picking

functionality. “Picking” refers to the selecting of a piece of the Performer scene using

mouse position. Especially useful is the ability in Performer to query a pick to return the

pfGeode or pfGroup which was selected by a mouse location. These specific Performer

aspects will be considered in detail below. As will be shown, while offering a great deal of

capability, the Performer “picking” functionality was not without unexpected

implementation difficulties.

Using the 2 1/2D mouse system the capability of a “hot mouse” was included in the

design of the Sand Table interface. The term “hot mouse” refers to some indication being

91

given to the user when the mouse cursor is over an object, in the Sand Table which may be

manipulated, without a mouse button having to be depressed. Specifically, when the

cursor passes over a control measure on the Sand Table the measure is highlighted with a

different color, currently a bright pink color. When the cursor is no longer located over an

object the object’s color returns to its original color. When the cursor is located over terrain

or sky nothing is highlighted. The “hot mouse” gives visual feedback to the user as to

which control measure is currently being selected with the user then being able to select a

mouse button which will manipulate the measure. The “hot mouse” is shown in Figure 49,

Figure 51 and Figure 50.

B. GRAPHICAL MEASURE IMPLEMENTATION

Having presented an overview of the actual interface functionality of the Sand Table,

the specific implementation will be examined. Recall, each control measure is represented

Cursor moves in 2
dimensions. Terrain

intersection is
unambiguous giving

third dimension.

Intersection with
line is unambiguous

giving third
dimension.

Figure 48: 2 1/2D Cursor Implementation

92

Mouse not located
over object, nothing

highlighted.

Figure 49: Hot Mouse Object Highlighting

Mouse located over
point, point
highlighted.

Figure 50: Hot Mouse Point Highlighting

93

in three different ways (see page 49). The first is how it is stored within the

PO_MEASURES_CLASS, the second is how it is stored in the

SP_DescribeObjectVariant PDU and the last is how the measure is actually displayed

with Performer. The graphical interface of the Sand Table is concerned with the last of

these and uses the first two to actually construct the last.

As discussed in Chapter IV, the PO_MEASURES_CLASS (see Figure 21) a member

polys of typepfGroup* is included in the class. The pfGroup whichpolys points to is

the graphical representation of that measure. So in essence each object stored in the Sand

Table database has a pointer to the pfGroup which represents itself. Within the constructors

of each of the derived classes of PO_MEASURES_CLASS, the members defining the state

of the control measure are assigned either by extracting the appropriate fields from the

SP_DescribeObjectVariant PDU or the values are passed directly via parameter.

Mouse located over
line, line highlighted.

Figure 51: Hot Mouse Line Highlighting

94

Additionally, within the constructor is the assignment of a pointer to the pfGroup, to

the memberpolys . This is accomplished by assigning the return value of the member

function make_meas to polys . polys is then available for inclusion on the Performer

scene graph which is done by adding the pfGroup toL_po_meas . See “Proper Display of

Control Measures on the Sand Table” on page 82.

An overall flow in the creation of a control measure from a graphical standpoint can

now be considered. First, a higher level function such asbuildItCB (see page 77) or

process_pdu (see page 58) will need to create an object of type

PO_MEASURES_CLASS. When the constructor is invokedmake_meas will create the

pfGroup which represents the object and a pointer to the group will be stored inpolys .

The higher level function will then have access to the pfGroup throughpolys to add the

pfGroup to L_po_meas . Another possibility is the receipt of a

SP_DescribeObjectVariant PDU which is a modification of an object already in the

Sand Table database. In this case the member functionupdate (see page 51) is called

which removes the old pfGroup frompolys and assigns a new pfGroup viamake_meas

to be used by the higher level function. Similarly, if an object were deleted, its pfGroup

would be removed and deleted via thepolys pointer. The deletion would be accomplished

by delete_object (see page 58). This flow in which the graphical portion of an object

is managed is depicted in Figure 52.

make_meas is where most of the desired functionality given in the graphical overview

is accomplished. make_meas actually constructs the Performer geometry which is

rendered in the Performer draw process. Since each type of control measure is constructed

differently, the placing of make_meas as a member function within the

PO_MEASURES_CLASS derived classes is another logical use of polymorphism. The

actual implementation ofmake_meas for each of the derived classes is covered in detail

in the next sections. Descriptions of the Performer functions and types used can be found

in the IRIS Performer Programming Guide and in subsequent C++ excerpts performer

functions begin with the prefix “pf”.

95

C. POINTS

The current Sand Table implementation has the ability to represent three different

kinds of points from the possible seventeen styles of points (see page 34) in ModSAF. The

buildItCB or
process_pdu

Higher Level
Function

PO_MEASURES_CLASS
 Object

Constructor update

make_meas
creates and

returns
pfGroup*

pfGroup*pfGroup*

polys pfGroup

L_po_meas

Performer
Scene

Rest of NPSNET
Performer Scene

polys pfGroup

pfGroup pfGroup pfGroup

Remove and
delete old
pfGroup

1 1

2

5

3

4

6

Graphical Flow. 1. Higher level function calls constructor orupdate . 2. If update
called remove and delete old pfGroup.3. Build and return new group using
make_meas. 4. pfGroup now accessible through memberpolys pointer. 5. Via
polys pointer, attach pfGroup toL_po_meas as child.6. L_po_meas is attached to
NPSNET scene graph.

Figure 52: Graphical Creation Flow of Control Measures

96

points include the general checkpoint, the coordinating point and the contact point. These

three points are shown in Figure 53. Only three points are currently represented; however,

the underlying architecture can support any number of points and the current Sand Table

versions serves as a proof of concept. The actual construction of the points is accomplished

in the PO_POINT_CLASSmake_meas which is contained in po_funcs.cc.

The actual geometry of the points is contained within a pfGeoSet which is added into

a pfBillboard to achieve the desired “billboarding” effect. The billboard effect ensures that

the point measure always faces the viewer. This structure, along with using pfBboardPos

to position the points, initially seemed sufficient to represent a point measure.

Unfortunately, due to desired functionality and Performer 1.2 documented deficiencies,

the final structure used is much more complicated. If subsequent versions of the Sand

Table are written using Performer 2.0, the structure may be more simplified and closer to

that described above.

The deficiencies are in two areas. The first is the inability to use the Performer picking

functions on points, lines or other pfGeoSets which are in billboards. Since a goal in the

graphical functionality was to “pick” objects with a 2 1/2D mouse cursor, this deficiency

Coordinating
Point General

Point

Contact
Point

Figure 53: Types of Point Measures Represented

97

presented a problem. The point measures were constructed using line strips and were

placed in billboard structures, resulting in the loss of the ability to pick the measure.

The second deficiency is Performer’s inability to “highlight” geometry within a

pfBillboard. Performer has a type, pfHighlight, which enables a node to be “highlighted”,

i.e. rendered in a color different than specified in its pfGeoState, simply by referencing the

appropriate pfNode for highlighting and marked the node during scene traversal. This

deficiency created a problem with the desired “hot mouse” graphical functionality since the

point measures were to be placed inside of billboard structures. The resulting structure is

less elegant than desired; however, it successfully works around the Performer deficiencies

and implements the desired functionality. The structure is shown in Figure 54.

The structure shown in Figure 54 solves both the “highlighting” and the “picking”

problems. In order to solve the “picking” problem, an additional structure had to be added

to the point which was not a child of a pfBillboard. To accomplish this the pfDCS was

added to the structure of the point measure. The Performer “picking” functionscan pick

through a pfDCS. In order to “pick” a point measure the transparent backboard is actually

the pfNode which is being “picked”. The Performer graph is then followed backwards

using pfGetParent to find the parent group which represents the point. Picking will be

discussed later but of importance here is the ability of Performer to “pick” the transparent

polygon which is collocated with the visible geometry of the point measure.

In order to solve the “highlighting” problem the use of the organic pfHighlight had to

be abandoned. In order to achieve point measures which change to a highlighted color the

pfSwitch in the figure was used. A pfSwitch allows the option of rendering selected

children of the switch, all of the children of the switch or none of the children. In the case

of the point, the children represent the point geometry rendered in the actual color of the

measure, i.e. the desired color of the measure on the Sand Table, or the highlighted color.

Only one of the children is rendered at any time. The effect is that the measure appears to

change color when highlighted when in fact a different pfGeoSet is actually being rendered.

98

Note, that the point measures’ pfGeoSets are still children of pfBillboards so the

“billboard” effect is retained.

Next examined is the actual building of the pfGeoSet which contains the geometry of

the point. Point measures are constructed using line strips to actually represent the point

icon. Performer has the ability to construct line strip primitives. To accomplish this, the

pfGroup

pfSwitch pfDCS

pfBillboard pfBillboard pfGeode

pfGeoSet pfGeoSet pfGeoSet

pfGeoSet in
actualmeasure

color

pfGeoSet in
highlight color

Transparent
backboard
rectangle

polys

Figure 54: Point Measure Performer Structure

99

attributes of the pfGeoSet are set using pfGSetAttr. A section of the Sand Table’s C++

code illustrates how the pfGeoSet is being constructed and is presented in Figure 55.

gset is of type pfGeoSet in the figure above. The important attributes which are set

arePFGS_COORD3 andPFGS_COLOR4. ThepfGSetAttr function call which contains

PFGS_COORD3 sets the actual vertices of the line strip being drawn. An array of pfVec3,

pointVerts , is supplied as a parameter in this pfGSetAttr function call. The

pfGSetAttr function call which containsPFGS_COLOR4 sets the actual color of the

pfGeoset withcolor being a pfVec4 which contains the RGBA vector of the desired

color. pfGSetPrimType sets the actual Performer primitive type to be used in

construction of the pfGeoSet, in this casePFGS_LINESTRIPS. When constructing the

transparent backboard the primitive type is set toPFGS_QUADS which builds a quadrilateral

polygon rather than a line strip.

pfGSetNumPrims sets the number of primitives which will be included in the

pfGeoSet. More specifically, when using the above method to construct a line strip, a

pfGeoSet may contain severalunconnected line strip segments to represent the desired

geometry. An analogy would be drawing a picture with a pencil on a piece of paper. Each

time the pencil is lifted from the paper a line stripsegment is left on the paper which

comprises one part or primitive of the entire drawing. Referring to the coordinating point

gset = pfNewGset(pfGetSharedArena());
pfGSetAttr(gset,PFGS_COORD3,PFGS_PER_VERTEX,pointVerts, NULL);
pfGSetAttr(gset,PFGS_COLOR4,PFGS_OVERALL, color, NULL);

pfGSetPrimType(gset, PFGS_LINESTRIPS);
pfGSetNumPrims(gset, numPrims);
pfGSetPrimLengths(gset, length_vec);

Figure 55: Creation of Point Measure pfGeoSet

100

in Figure 53, the corresponding pfGeoSet for the coordinating point would consist of three

primitives, one segment for the circle, and one for each of the lines comprising the “X”.

Lastly, pfGSetPrimLengths sets the total number of vertices used in the pfGeoSet’s

line strips. With the actual construction of the pfGeoSet being outlined, the remaining

consideration is howcolor , pointVerts , numPrims and length_vec are given the

correct values for the point being constructed. Recalling the PO_MEASURES_CLASS,

color is already a member of the class (see Figure 21) and its value should be set prior to

calling make_meas. The next three parameters used in the construction of a point are

contained in a file which stores the geometry for each point. Since the geometry of point

measures is relatively simple, point geometry is created in advance for each style of point

and stored in a file for future use. The file format is simple containing the number of

primitives, the number of vertices in each primitive and a list of the x, y and z coordinates

for each vertex. The file is stored as a text file with the suffix “.lst” (line strip).

The total functioning ofmake_meas can now be examined. When called,

make_meas examinesstyle of the PO_POINT_CLASS object. Based on this style the

appropriate file is opened andnumPrims , length_vec and the actual vertices are read.

Three pfGeoSets are then created, the first is created using the code of Figure 55. The next

uses the same code except for the setting ofPFGS_COLOR4 in which a pfVec4 for the

desired highlight color is supplied as a parameter. Lastly, a pfGeoSet is created using a

primitive type ofPFGS_QUADS rather thanPFGS_LINESTRIPS and a “.lst” file containing

vertices for the transparent polygon. A transparent color is also supplied.

The first two pfGeoSets are then added to the pfBillboards and the last pfGeoSet is

added to the pfGeode which is added to the pfDCS of Figure 54. The rest of the structure

of Figure 54 is then constructed by simply creating the shown pfNodes and adding the

corresponding children. The final consideration is the actual location of the measure.

Recalling PO_MEASURES_CLASS (see figure 21 on page 50) the location of the point

measure is contained in the memberpoints . This location is used to position the two

101

pfBillboards and the pfDCS which are updated to be coincident withpoints ensuring the

point geometry and the backboard used for picking are collocated.

 This completes the construction of the point measure which is contained in the

pfGroup shown in the Figure 54. The pointer to this pfGroup is then returned and assigned

into polys .

D. LINES

The next version ofmake_meas to be examined is that used to create the Performer

representation for a linear control measure. The current version of the Sand Table only

implements one style of line; however, the thickness and color can be varied. Ideally, the

representation of the line would consist of a single pfGeode which contained a pfGeoSet

for a single line strip over the terrain. However, the Performer limitations which created

problems in “highlighting” and “picking” of points have the same effects on lines although

to a lesser extent. Linear control measures do not use pfBillboards but they are constructed

using line strips which precludes immediate “picking” and “highlighting” using Performer

functions. Another consideration is that unlike points, which have the same geometry and

are simply moved using billboard position and DCSs, every line has a unique geometry

describing it and in order to accomplish “terrain following” graphical functionality, as

described above, the geometry of a line will change each time it moves. The result of this

consideration is that every duplicative pfGeoSet used to correct for “picking” and

“highlighting” may have adverse consequences on performance due to the recurring

construction of lines.

The resulting Performer structure is shown in Figure 56. While not as complicated as

the Performer structure for a point, the actual construction still has a redundant

representation of the measure which has a slight performance penalty.

Comparison of the linear structure with the point structure can assist in understanding

the structure. The first notable differences are the lack of pfSwitchs, pfBillboards and

pfDCSs. Switches are not used because while a duplicate line could be made in the

102

highlight color, the performance penalty would be too great. This is due to the fact that

even though the additional line strip would solve the “highlighting” problem a line strip still

cannot be “picked” so anadditional structure would still have to be added resulting in three

representations of the same line. The above structure results in only one duplicate

pfGeoSet being created rather than two.

pfBillboards are not needed because lines are not rotated with respect to the viewer and

are placedabsolutely over the terrain. Lastly, pfDCSs are not needed because the actual

point locations on the terrain are used in the construction of the line strips in the pfGeoSet.

This differs from the line strips used for the points in which the icon was drawn using a

relative coordinate system and then translated to a location on the terrain.

pfGroup

pfGeode

pfGeoSet pfGeoSet

Line strip in
actualmeasure

color

Transparent
vertical triangle

strip

polys

pfGeode

Figure 56: Linear Measure Performer Structure

103

The linear measure structure presented in Figure 56 solves the “picking” and

“highlighting” problem by using the fact that while a line strip cannot be “picked” a triangle

strip can be “picked”. Hence, while the pfGeode containing the line strips is used to

actually render the line, the transparent triangle strip is used to query a mouse hit. The

query will return the pfGeode containing the triangle strip and the Performer scene graph

can be followed backwards to the parent pfGroup as was done with the point Performer

structure.

In order to highlight the “picked” group the actual color attributes of the pfGeoSet are

changed dynamically. This is done in the functionpoHighLight which is contained in

the file highlight.cc. This is accomplished by usingpfGSetAttr each time the line is

highlighted.pfGSetAttr is invoked settingPFGS_COLOR4 to the desired highlight color.

The oldPFGS_COLOR4 is retained andpfGSetAttr is again invoked when the measure

needs to return to its actual color. This solution may also seem applicable to the point

measure eliminating the need for a duplicate pfGeoSet; however, it was discovered while

programming the measures, that the changing of color’s attributes did not work when the

pfGeoSet was the child of a pfBillBoard.

Having described the structure in which the linear control measure is represented, the

actual construction will be examined. An excerpt from the PO_LINE_CLASS member

functionmake_meas will again serve as a good starting point and is presented in Figure

57. The code is nearly identical to that presented for the point measure with some

exceptions which will be discussed.

gset is again of type pfGeoSet and stores the actual geometry of the line.coords is

a pointer to an array of pfVec3 which contain the x, y and z coordinates of the vertices in

the line.color is a pfVec4 member value of the class and should have been set prior to

callingmake_meas. The primitive type is stillPFGS_LINESTRIPS; however, the number

of primitives is only one since the pfGeoSet will consist of only one connected line strip.

length_vec contains the number of vertices in the line strip. Lastly,pfGSetLineWidth ,

104

as the name implies, sets the width of the actual line strip in pixels using the class member

thickness which likecolor should be set prior to callingmake_meas.

What remains to be determined iscoords and length_vec which are interrelated

and determined as follows. Unlike point measures, whose geometry is known a priori, the

number of vertices and actual vertex values must be calculated for each line. Recalling the

PO_MEASURES_CLASS (see Figure 21), the memberpoints contains the vertices of

the line. However, these vertices are not enough to construct a line because their

granularity is not small enough. More specifically, when constructing a line, the user

places points at where the line changes direction (see Figure 45). This is not based on

terrain elevation; rather, it is only based on geographic position.

In order to achieve aperfect “terrain following” functionality for the lines, the actual

elevation of the terrain must be known atall points on the terrain under the line. These

elevations would then be used to elevate every point of the line strip the proper distance

above the terrain. While aperfect line strip is impractical, the concept shows that more

elevation samples are needed under the line than those of the locations chosen by the user

and stored inpoints .

An example will clarify the concept and is presented in Figure 58 and Figure 59.

Figure 58 illustrates a line constructed using only the vertices given inpoints . As can be

gset = pfNewGset(pfGetSharedArena());
pfGSetAttr(gset,PFGS_COORD3,PFGS_PER_VERTEX,coords, NULL);
pfGSetAttr(gset,PFGS_COLOR4,PFGS_OVERALL, color, NULL);

pfGSetPrimType(gset, PFGS_LINESTRIPS);
pfGSetNumPrims(gset, 1);
pfGSetPrimLengths(gset, length_vec);
pfGSetLineWidth(gset, thickness);

Figure 57: Creation of Linear Measure pfGeoSet

105

seen, the given points are not sufficient to make a smooth line over the terrain. The line

actually goes through terrain because the elevations simply connect the vertices ofpoints .

Figure 59 takes each line segment between two vertices inpoints and subdivides the

segment into smaller segments. The result is a sequence of elevation “posts” and a closer

“terrain following” representation. Note that in flat terrain fewer posts are required than in

steep mountainous terrain. Additionally, a lower resolution line (fewer elevation “posts”)

can be used when moving or manipulating a line, which is exactly what is done when the

Sand Table drags a line. This will be examined later.

The result of subdivision is that during actual line constructionpoints is used to

construct initial line segments. The angle between each set of two vertices inpoints is

calculated to form the initial line segment. This line segment is then subdivided into

smaller segments giving a set of additional vertices locatedon the initial line segment,

between the two original points, at the correct elevation. Each of the vertices is added to

User Chosen
Points

Figure 58: Calculating Line Strip Vertices Using Onlypoints

106

an array of vertices stored atcoords and the total number of vertices is stored at

length_vec . coords andlength_vec are then used for the actually construction of the

pfGeoSet as shown in Figure 57. Lastly, if a linear measure is being constructed as a closed

line loop a line segment is constructed from the last vertex inpoints to the first, the

segment is subdivided as above and the vertices and number of vertices are added to

coords andlength_vec .

This completes the construction of the visible line strip; however, the transparent

triangle strip used for picking must also be constructed. The triangle strip is oriented

vertically and the pfGeoSet for the strip is created in the functionmake_vertical . The

construction uses the points calculated in a manner similar to those used for the line strip;

however, additional points are needed to provide all of the vertices for each of the triangles

in the strip. Figure 60 depicts a “close-up” of a vertical triangle strip compared with the

Line Segments
Divided

Figure 59: Calculating Line Strip Vertices Using Subdivision

107

line strip. In the line strip representation each “+” represents a vertex, and the line segment

between the vertices are the sub-segments of the line strip. These were calculated during

subdivision as described above. These vertices can be used directly to construct the line

strip. These vertices are also used in the triangle strip; however, only in an intermediate

step.

In the triangle strip representation the dotted center line and vertices represent the same

subdivisions used in the line strip. To these vertices a distance, based on the desired

thickness of the triangle strip, is added and subtracted vertically. The result is the actual

vertices used in the triangle strip. These vertices are then put intocoords and the

cumulative number of vertices is placed inlength_vec . Note, that for every vertex in the

line strip, two vertices are required for the triangle strip.

With coords and length_vec acquired the pfGeoSet is constructed using

PFGS_TRISTRIPS as the Performer primitive. Both pfGeoSets (line strip and triangle

strip) are then put in pfGeodes and added to the parent group.

E. MINEFIELDS

The last version ofmake_meas is that used for minefields. The creation of minefields

is very similar to the creation of closed line loops just presented with the difference being

that minefields are constructed usingvisible triangle strips rather than line strips. The

triangle strips are horizontal and appear as a “ribbon” placed over the terrain. The actual

Performer structure for a minefield is the simplest of all the measures and since the measure

uses triangle strips there are neither “picking” nor “highlighting” problems. The minefield

Performer structure is shown in Figure 61.

The minefield is constructed exactly as the linear measure is constructed with the

following exceptions. Only the triangle strip is constructed, it is visible, and the

displacement used to calculate the triangle vertices is horizontal rather than vertical. This

is slightly more difficult because the distance added to the center line is not simply up or

down as was the case with the vertical strip. Rather, it is a vector component based on the

108

angular heading of the line segment being represented. This is solved with simple

trigonometry and is not presented here. Once the vertices have been calculated the

pfGeoSet, pfGeode and pfGroup are constructed using the same method as was used for the

linear measures.

F. PICKING, DRAGGING AND DROPPING

While previously eluded to, the implementation of picking, dragging and dropping

will now be examined. As was seen in the previous sections, many of the design

considerations used in building the control measures were made with picking, dragging and

Line Strip Representation

Triangle Strip Representation

Figure 60: Vertical Triangle Strips

109

dropping in mind. The resulting structures for the measures are quite effective and

sufficient for creating intuitive manipulation of control measures.

1. Picking

A goal in designing the “picking” system was to use the functionality provided by

Performer. Additionally, basic “picking” functionality was available in the Silicon

Graphics programPickfly which is released for unrestricted use. By extending this

program, the “picking” functionality of the Sand Table was created. The functions used in

“picking” are contained in picking.cc.

The basic flow of the picking function is as follows. The function prepares for a pick

by initializing the “pick” to the Performer scene which is being picked from. Next, mouse

pfGroup

pfGeoSet

Horizontal triangle strip in
actualmeasure color

polys

pfGeode

Figure 61: Minefield Performer Structure

110

screen coordinates are normalized to world coordinates. The pick is then made and its

results are returned in a variable of type pfHit. This pfHit variable is then queried for the

pfNode from the scene graph which intersected the cursors normalized position. The pfHit

can also be queried for the actual geometry coordinate of the point in the scene where the

mouse intersected and the path taken in the Performer scene to arrive at the intersecting

pfNode. Each of these queries is used in the Sand Table. A structure, Pick, is created to

store many of the variables used during “picking”. The structure presented in Figure 62

and Figure 63 is an extract of C++ code fromDoPick which is the function which actually

implements the pick outlined above (code not examined has been omitted for brevity).

The functionDoPick takes a variableP of type Pick and mouse screen coordinates as

input. The function then fills the pick structure as will be shown and returns a pointer to

the node which was selected from the pick. Prior to calling the function, the Performer

scene and channel against which the pick is being made are loaded intoP.

pfNodePickSetup initializes the pick mechanism with the scene.

pfuCalcNormalizedChanXY normalizes the mouse screen coordinates to the channel

being picked against and stores the normalized coordinates inP->pickX andP->pickY .

These normalized coordinates are then used inpfChanPick to actually traverse the scene

typedef struct pickstruct{
pfScene *scene;
pfChannel **chan;
pfNode *picked;
pfGroup *group;
pfVec3 point;
pfPath *path;
char *pathname;
float pickX;
float pickY;
long traverse;

} Pick;

Figure 62: Pick Structure

111

graph and determine if mouse hits have been made. If so, these hits are stored inipicked .

ipicked can then be queried to find what was actually picked with the mouse hit.

ipicked is queried for three values,PFQHIT_NODE, PFQHIT_POINT and

PFQHIT_PATH. These correspond to the pfNode which was selected, the coordinate of the

point on the scene geometry and the path taken to the node. These values are loaded inP

and contain the information actually used by the Sand Table.

When a node is picked its path is examined to see if the pfGroupL_po_meas is

included. If so, the selected node is a control measure because, recalling Figure 52, all

control measures are added as children to theL_po_meas pfGroup. If a control measure

has been hit, the parent group of the measure can be found by starting with the actual

pfNode whichwas hit and following the parents back to the pfGroup at the top of that

particular measure. The measure is then highlighted in a manner appropriate for that

measure as discussed above achieving the “hot mouse” functionality desired. Further,

since the parent pfGroup has been obtained, a pointer to that group can be used as a key to

pfNode *DoPick(Pick *P, long mousex, long mousey){
long pick_count = 0;
static pfHit **ipicked[10];

pfNodePickSetup(P->scene);
pfuCalcNormalizedChanXY(&P-pickX, &P->pickY,

 *P->chan, mousex,mousey);
pick_count = pfChanPick(*P->chan, P->traverse,

 P->pickX, P->pickY, 0.0,
 ipicked);

pfQueryHit(*ipicked[0], PFQHIT_NODE, &P->picked);
pfQueryHit(*ipicked[0], PFQHIT_POINT, &P->point);
pfQueryHit(*ipicked[0], PFQHIT_PATH, &P->path);

...
}

Figure 63: DoPick

112

find the actual PO_MEASURES_CLASS object which represents the measure in the Sand

Table database. The pointer to the group would be compared against the memberpolys

in the PO_MEASURES_CLASS object. Thus we have achieved the capability of

accessing a control measure in the database via picking from the three dimensional scene.

This will serve as the basis for all manipulation of the control measures on the Sand Table.

The possibility also exists, that when the path is examined from a node which was

picked,L_po_meas was not picked. This could be any object in the three dimensional

scene. However, this version of the Sand Table is concerned with only two possible

objects. The first, is a pfNode which is part of the cone tree menu. This possibility is

handled in the same way in which control measures were handled in that the path is

examined to find a parent. However, the path is not examined forL_po_meas rather, it is

examined for the pfGroupL_menu which is the parent group for all Performer menu

structures. The path within the Performer graph can also be followed back to a parent group

which will be used for a callback mechanism within the menu system. The cone tree menu

will be discussed further in Section H.

The other possible object, or actually Performer geometry, which is of interest to the

Sand Table, is the terrain itself. ThePFQHIT_POINT query returns the coordinates of the

Performer geometry selected in a pfHit. Using this the Sand Table has the capability to

select a point on the terrain and obtain its coordinates via mouse input from the three

dimensional scene. This will be used during dragging and dropping, menu placement and

placement of points used in the construction of lines and points.

A summary of the Sand Table “picking” mechanism ofDoPick is shown in Figure 64.

The MENU_LEVEL class shown in the figure has not yet been introduced; however, the

figure shows how a graphical selection gives a pointer which is used by the menu system

Within po_funcs.cc is a functionHLPick which actually callsDoPick . Recall, that

DoPick loads a variable of typePick with the query values of the pfHit.HLPick

processes two types of picks fromDoPick , those being control measures (children of

L_po_meas in Figure 64) and terrain locations. The menu system has its own function,

113

polys pfGroup

L_po_meas

Performer
Scene

NPSNET
Performer Scene

pfGroup pfGroup pfGroup

2

1

PO_POINT_CLASS
object

L_menu

pfGroup pfGroup pfGroup

nodeGroup pfGroup

MENU_LEVEL
object

(4286,3967)

Terrain Geometry

3 4

5

6

7

Possible Picking Events Which May Occur. 1.Geometry from measure is “hit” with
cursor. 2. Queried path containsL_po_meas . 3. Scene graph traced to parent group
which is same group pointed to bypolys in PO_MEASURES_CLASS object.4.
Geometry from menu icon is “hit” with cursor.5. Queried path containsL_menu. 6.
Scene graph traced to parent group which is same group pointed to bynodeGroup in
MENU_LEVEL object. 7. Query returns intersection point of cursor on terrain.

Figure 64: Sand Table Picking

114

menuPick , which processes picked menu icons (children ofL_menu in Figure 64). With

these values and mouse button values the appropriate actions are taken.

The flow ofHLPick resembles a finite state machine in that the actions taken depend

not only on the current values of the selected group and mouse button values, but also prior

values. The state of the function can be determined by the current values of the mouse

buttons and the values of the variablespickedGroup , which is the parent pfGroup

returned fromDoPick , andmouseWasDown which was the value of the mouse button the

last time through the function. Both of these variables have the value of zero prior to entry

into HLPick . The flow is best described in a diagram which is presented in Figure 65 and

described below.

DoPick is called and a variable of typePick is returned. The pfGroup is extracted

from Pick and checked to see if it is a control measure or terrain (logical OR). If not, the

mouse button is checked. If depressedpickedGroup andmouseWasDown are checked.

If pickedGroup != 0 andmouseWasDown = 1 then a measure is being dragged and the

most recent mouse position is ignored. This would occur for example if a measure was

being dragged and it was dragged across the menu icons. Appropriately, nothing would

happen. If a measure is not being dragged and the mouse button is depressed, the pick is

processed elsewhere, in the current version of the Sand Table this processing would occur

in menuPick . If the mouse button is not depressed any “highlighting”, which may have be

on, is turned off andpickedGroup andmouseWasDown are both set to zero. This would

occur if the mouse cursor was moved off of a measure and onto another object in the scene.

If the pfGroup selected was terrain or a control measure (logical OR) the mouse button

is again checked. If depressedpickedGroup and mouseWasDown are checked. If

pickedGroup != 0 andmouseWasDown = 1 then a measure is being dragged and the

drag is processed. IfpickedGroup = 0 or mouseWasDown = 0 the extracted pfGroup

is examined to determine whether it is terrain or a control measure. If terrain, the

coordinates of the point on the terrain are retrieved (also inPick) and possibly used for

building a line or point measure. This will be discussed with the cone tree menu system.

115

DoPick

Pick

Is pfGroup a
measure OR

terrain?

HLPick

Process
elsewhere

NO

NO

Is the cursor over
terrain?

Return

YES

Highlight the
measure.

Is mouse button
depressed?

YES

“Un-Highlight”
highlighted measures.
pickedGroup =0

mouseWasDown=0

Return

Is mouse button
depressed?

“Un-Highlight”
highlighted measures.
pickedGroup =0

mouseWasDown=0

NO

Return
NO

Does
pickedGroup !=0

AND
mouseWasDown=1

NO

YES

Process
dropping of

measure

Does
pickedGroup !=0

AND
mouseWasDown=1

YES

Is the cursor over
terrain?

Process for
possible adding

of points.

YES

Process
dragging of

measure

Return

YES NO

pickedGroup =
pfGroup from Pick
mouseWasDown=1

NO

Return Return

Does
pickedGroup !=0

AND
mouseWasDown=1

NO

YES

Return

YES

Figure 65: Flow ofHLPick

116

If a measure, then the pick is the initial selection of a measure to be dragged.

pickedGroup is set to the extracted pfGroup andmouseWasDown is set to one enabling

the measure to be dragged the next timeHLPick is called.

If the mouse button was not depressed and terrain or a measure were selected,

pickedGroup and mouseWasDown are checked. IfpickedGroup != 0 and

mouseWasDown = 1 then a measurewas being dragged and is being dropped. If not, then

either terrain has been “hit” in which case any highlighted measures are “un-highlighted”

or a measure is “hit” and highlighted.

2. Dragging and Dropping of Control Measures

With the “picking” capability described above the task of dragging and dropping

control measures becomes very straightforward. Three polymorphic member functions

within PO_MEASURES_CLASS (see Figure 21) are used in dragging and dropping and

are called fromHLPick . These functions aremovePO, dragUpdatePO and dragToNet .

The actual function for each derived class will be examined in the sub-sections below.

a. Dragging and Dropping of Points

When the conditions of Figure 65 have been met for dragging a point, the

PO_POINT_CLASS member functionmovePO executes the drag. The function exploits

the duplicate geometry of the point measure’s Performer structure actually recouping some

of the performance cost of the redundant structure. The functionmovePO is given in Figure

66. Referring to Figure 54 will aid in understandingmovePO.

The function is called with the coordinates of the terrain at which the cursor is

located (see Figure 62).outToNet is used as a flag to indicate whether or not the drag

should be sent to the network. Both the highlighted and measure color version of the point

geometry are selected with thepfSwitchVal statement so both will be rendered. The

pfBillboard which contains the highlighted version is then translated to the point at which

the cursor is located on the terrain. The effect is that when a point is being dragged, a point

icon of the measure color remains in the original position of the point on the terrain, while

117

a highlighted point icon is moved dynamically to a new point on the terrain. This is updated

each time through the application process and the point is moved across the terrain in real-

time. Note, that the actual member values of the PO_POINT_OBJECT which actually

determine the state of the object arenot changed during the drag.

If the drag is being sent to the networkdragToNet is called. dragToNet is

basically likesendPDU (see page 52) with the exception thatupdatePDU is not called and

the only part of theSP_DescribeObjectVariant PDU which is changed is the location

of the point. A Sand Table or ModSAF station receiving these PDUs treat them as normal

with the functionupdate (see page 51). The result is that the point measure will move

over terrain on the other simulator as it is being dragged on the local simulator, depending

on network traffic, in real time.

 When the mouse button is released after dragging a point the function

dragUpdatePO is called. The function is given in Figure 67. The function is very similar

void PO_POINT_CLASS::movePO(float xpos, float ypos, ushort
outToNet){

pfSwitch* ptSwitch;
pfBillboard* board;
pfVec3 tempPoints;

tempPoints[X] = xpos;
tempPoints[Y] = ypos;
tempPoints[Z] = gnd_level2(tempPoints);

ptSwitch = (pfSwitch*) pfGetChild(polys, 0);
pfSwitchVal (ptSwitch, PFSWITCH_ON);
board = (pfBillboard*) pfGetChild(ptSwitch, 1);

pfBboardPos(board, 0, tempPoints);

if (outToNet) dragToNet(xpos, ypos);
}

Figure 66: movePO

118

to movePO except that the points read from the terrain are actually put into the member

points which actually changes the state of the PO_POINT_CLASS object. Next, the

pfSwitchVal sets the switch so that only the measure colored geometry is rendered. The

billboard locations are set to the location ofpoints as is the DCS which makes both

representations of the point geometry and the backboard quad coincident on the terrain.

Lastly, if the drop is being sent to the network,updatePDU updates the memberpdu and

theSP_DescribeObjectVariant PDU is sent to the network.

void PO_POINT_CLASS::dragUpdatePO(float xpos, float ypos,
ushort outToNet){

pfSwitch* ptSwitch;
pfBillboard* board, *board2;
pfDCS DCS;

points[X] = xpos;
points[Y] = ypos;
points[Z] = gnd_level2(points[0]);

ptSwitch = (pfSwitch*) pfGetChild(polys, 0);
pfSwitchVal (ptSwitch, 0);
board = (pfBillboard*) pfGetChild(ptSwitch, 0);
board2 = (pfBillboard*) pfGetChild(ptSwitch, 1);

DCS = (pfDCS*)pfGetChild(polys, 1);
pfDCSTrans(DCS, points[0][X],points[0][Y],

points[0][Z]);

pfBboardPos(board, 0, points[0]);
pfBboardPos(board2, 0, points[0]);

if (outToNet) {
updatePDU();
sendPDU();

}
}

Figure 67: dragUpdatePO

119

b. Dragging and Dropping of Lines and Minefields

The dragging and dropping of lines and minefields use the same methods so only

lines will be discussed. The dragging of lines is much more difficult than points for two

reasons. The first is the difficulty of moving lines in real time. This is due to the fact that

constructing a line which follows the contour of the terrain must be done at every new

position. The actual construction takes a relatively large amount of time which would be a

noticed latency in the moving of a line. The second difficulty is that lines do not possess

an easily manipulable pfDCS nor pfBillboard as points do.

The first problem is solved by using a lower resolution representation of the line

when it is being dragged. Recall (see Figure 59) that when the geometry for a line is

created, a subdivision is used to create “terrain following”. In order to create a lower

resolution line, the size of each segment is simply increased, thereby decreasing the number

needed. If the line has a low enough resolution, the computation is minimal and can be

completed in real time. The trade off, which is the possibility that the line may intersect

terrain, was already eluded to in Figure 58. This was deemed acceptable since the real time

dragging was considered more important and the low resolution representation of the line

is only used during dragging. This solution is implemented by using a function called

makeQuickLine . makeQuickLine creates a low resolution line which is added to the

pfGrouppolys . As soon as the line is dropped the higher resolution line is again used and

the line created bymakeQuickLine is removed from the scene.

The second problem is solved by saving a reference point when the line is first

selected to be dragged. On subsequent calls tomovePO, the location of the cursor on the

terrain is compared to the reference point and differences in the x and y coordinates are

calculated. These difference are then applied to each of the pfVec3s inpoints to give the

new point locations. These locations are then used bymakeQuickLine to construct a low

resolution line representation which is displaced by the correct amount. This is

demonstrated in Figure 68. Note that the high and low resolution lines are depicted in the

x-y plane which is inaccurate. The resolution is actually in thevertical plane. However,

120

this is a limitation of the figure and the point is still made. The x and y differencesare

depicted correctly.

Having described the components ofmovePO the operation of the function will

be summarized. The function is called with coordinates from the terrain. The coordinates

are saved as a reference point. On subsequent calls the coordinates which are passed to the

function are compared to the reference point. A difference is calculated and is applied to

points andmakeQuickLine creates the low resolution line. Any old low resolution lines

(from previous invocations ofmovePO) are removed from the scene. The new low

resolution line is added to the scene and if required the drag is sent to the network with

Figure 68: Dragging a Line

Initial mouse pick.
Coordinates are saved.

Subsequent mouse
picks. Difference is

calculated.

∆Y

∆X

High resolution line

Low resolution line

Difference is applied
to each pfVec3 in

points

121

dragToNet . Again note, that no changes are made to the member functions of the

PO_LINE_CLASS object in the drag operation.

dragToNet also presents difficulties in the dragging of lines. This is due to the

function update which, upon receiving aSP_DescribeObjectVariant PDU for the

line being dragged, builds a high resolution representation of the line. To solve this

problem an unused field in the SP_LineClass variant of the

SP_DescribeObjectVariant PDU is used (see Figure 11). The field is named

_unused_10 and is not employed by ModSAF. (The field is named_unused_13 for the

minefield variant. (see Figure 15) The Sand Table, however, uses the field to flag whether

or not a control measure is being dragged. The functionupdate then checks the field and,

if the measure is being dragged, constructs the measure usingmakeQuickLine . Thus,

both the local and remote simulator will render the line or minefield being moved in real

time.

Lastly, when the measure is dropped, the low resolution representation of the

line is removed from the Performer scene graph. The difference calculated from the

reference point is actually used to modify the memberpoints and a high resolution

representation is created and assigned topolys . updatePDU is called which in the case

of the line and minefield also resets the flag which indicates the measure is being dragged.

sendPDU then sends the modifiedSP_DescribeObjectVariant PDU and all Sand

Tables update the position of the measure with a high resolution representation.

G. CONE TREE MENU SYSTEM

The final topic covered in this chapter is the cone tree menu system. This system was

seen in Chapter IV in the context of building points and lines on the Sand Table. This

section is a more detailed examination of the menus and examines their actual design and

functionality. The menu is depicted below in Figure 69.

The menu is designed to be placed on terrain at any location desired by the user. The

menu is intended to be an “area of interest” tool meaning that it can be placed in thearea

122

where the user is doing work on the Sand Table. This can be contrasted to the classic

window style menu system in which the user must take his attention out of the scene,

manipulate the menu and then return to the scene. The menu can also be dragged over the

terrain or collapsed from view offering the user great flexibility to quickly position the

menu where it is useful, yet not obscuring more important parts of the Sand Table.

The menu consists of two major components which are interconnected. These

components are the graphical representation of the menu and the callback mechanism for

the icons. The menu consists of the class MENU_LEVEL which is defined in menu.cc.

The menu itself is literally a depiction of the Performer graph itself. By examining the

prototype for MENU_LEVEL along with a “dissected” cone tree menu the close

correlation is quickly seen and the menu can be understood more quickly. The prototype

is given in Figure 70 and the “dissected” menu is presented in Figure 69.

Figure 69: Cone Tree Menu

123

The diagram shows the structure forone level in a cone tree menu. The actual

Performer nodes are shown as well as their corresponding member names. When

examining the Performer structure, the diagram is actually upside down, with the members

at the bottom of the diagram being the parents of those nodes located higher in the diagram.

At the base of each menu level is that level’sroot which is a pfDCS. In the case of the

lowest menu level, theroot serves to position and move the menu on the virtual terrain.

class MENU_LEVEL{
public:

pfDCS* root;
pfGroup* nextLevelSwitch;
pfGroup* nodeGroup;
pfDCS* rotateDCS;
pfGroup* edgesGroup;
pfGroup* downGroup;
pfGroup* rightGroup;
pfGroup* leftGroup;

pfVec3* points;

int numChildren;
int childNumber;

MENU_LEVEL* nextLevel[MAX_CHILDREN];
MENU_LEVEL* previousLevel;

float cumRotation;

void simSwitch(int);
MENU_LEVEL(pfGroup *node,

void(*function)(MENU_LEVEL*));
MENU_LEVEL(pfGroup *node,

void(*function)(MENU_LEVEL*), void*);
~MENU_LEVEL();

void addMenuChild(MENU_LEVEL* child);

};

Figure 70: MENU_LEVEL Class

124

Figure 71: Dissected Cone Tree Menu

root

nextLevelGroup

pfDCS

pfGroup

pfGroup

nodeGroup

pfGroup

pfGroup pfGroup

leftGroup

rightGroup downGroup

rotateDCS pfDCS

edgesGroup pfGroup

root s for next
MENU_LEVEL

MENU_LEVELL_menu

125

By translating this DCS, the menu can be positioned at any coordinate. pfDCSs in higher

menu levels serve to place the root at the correctrelative position of the cone structure. The

lowest level root is also the node which is attached toL_menu which is the base of the menu

which is attached to the rest of the NPSNET Performer scene graph (see Figure 64).

nextLevelGroup is the next node in the menu tree.nextLevelGroup is also the

result of a Performer limitation. The desired functionality of the node was to control which

of the children groups abovenextLevelGroup would be displayed. This functionality

seemed perfectly suited to a pfSwitch node which allow the selective choosing of nodes to

be rendered. The difficulty arose with Performer’s inability to “pick” through a pfSwitch

during the graph traversal, the exact ability which is needed in the menu. The icons must

be able to be queried with a pfHit so they can be located and the correct menu action can

be carried out.

The solution wasnextLevelGroup which is not a pfSwitch; rather, it is an ordinary

pfGroup which is used tosimulate a switch. This is accomplished with the function

simSwitch which uses the Performer functions pfAddChild, pfGetChild and

pfRemoveChild to selectively add and remove children from thenextLevelGroup

pfGroup. The function is called with an integer parameter and can display all of its

children, none of its children or selected children.

The children added tonextLevelGroup are leftGroup , rightGroup ,

downGroup , nodeGroup androtateDCS . leftGroup , rightGroup , downGroup and

nodeGroup each have a “pickable” icon associated with them.leftGroup and

rightGroup rotate the next higher cone tree level.downGroup collapses the next higher

cone tree level.nodeGroup is the actual icon for the chosen level. When selected it may

expand the menu by one level (if not the terminator) and will execute a function appropriate

to the desired functionality of the icon. The graphical structure of the icons is the same as

for point control measures (see Figure 54) and is constructed in the same manner. However,

different functions are used to actually create the structures. These functions are

makePickableTriStrip and makePickableLnStrip which, as the names imply,

126

make a triangle strip and a line strip which can be “picked” and “highlighted” with the

cursor using the structure of Figure 54. Both functions read vertices from files as did

make_meas (see page 95). The functions are contained in the file menu_funcs.cc.

In addition to the graphical structure of the icons, each icon has an associated callback.

These callbacks give the menu all of its functionality. The callbacks are implemented by

using pfUserData. pfUserData is a Performer function which allows the programmer to

associate a pointer to data, with a Performer node. In the case of the menu system, a pointer

to a call back structure is assigned to the parent pfGroup of an icon’s graphical structure.

The callback structure used in the Sand Table is depicted in Figure 73 and the function

which assigns callbacks to nodes,assignCB , is given in Figure 72. This function is

contained in po_funcs.cc.

The callback structure contains a pointer to a function,function , which takes a

MENU_LEVEL pointer as a parameter. This is the actual function which will be called

when the icon is selected. The MENU_LEVEL pointer is passed to give access to the menu

structure for menu expansion or menu collapse.nodeLevel is a pointer to that actual

menu level. Lastly,userData can contain a pointer to any piece of data which can then

be used byfunction . The allows maximum flexibility in what action the callback

actually executes.assignCB simply allocates storage for a new callback and loads the

callback with the values sent by the parameters. Lastly, using pfUserData, the pointer to

Figure 72: Callback Structure

struct callBack{
void (*function)(MENU_LEVEL*);
MENU_LEVEL* nodeLevel;
void* userData;

}

127

the callback is associated with the actual Performer node which would be graphically

picked.

Callback operation can now be summarized. First, a pickable piece of the menu is

selected with the cursor. The path is queried to see if it contains (see Figure 64)L_menu.

If so the Performer path is traced to the parent pfGroup of the icon structure. From this

pfGroup a pointer to the callback structure is extracted. From the callback structure the

function to be executed uses the pointer to the applicable menu level for menu manipulation

and user data for any other actions carried out by the function. This “picking” and callback

functionality is executed frommenuPick which was mentioned during the examination of

picking.

Continuing with the structure of the menu,rotateDCS will be examined.

rotateDCS enable the cone branches and the icons located on the end of them to rotate

like a “lazy susan”. This allows the user to spin the varying levels of the menu to give an

uncluttered view of the desired icons.rotateDCS ’s one child isedgesGroup which

contains the graphical branches as well as theroot nodes from the higher menu levels.

Children are added to the menu using the member functionaddMenuChild .

Figure 73: assignCB

void assignCB(pfGroup* node, void (*function)(MENU_LEVEL*),
 MENU_LEVEL* level, void* userData){

callBack* groupCB;

groupCB = (callBack*)pfMalloc(sizeof(callBack),
pfGetSharedArena());

groupCB->function = function;
groupCB->nodeLevel = level;
groupCB->userData = userData;

pfUserData(node, groupCB);
}

128

When a menu level is passed toaddMenuChild the membernumChildren is

examined to determine how many children have been added to that level. From the number

of children the relative position for each child icon is calculated. Usingroot , each child

menu level is translated to its appropriate location for that level. Lastly, two line strips, one

white and one highlighted, are constructed to actually represent the branch. Both the

branches and the child icons are then put into theedgesGroup pfGroup of the parent menu

level.

Having described the components of the menu, its construction can now be described

in full. Note their are two constructors for the MENU_LEVEL class. The first two

parameters are the same for each constructor. The first parameter is the pfGroup at the

base of the MENU_LEVEL being created, which will be assigned tonodeGroup in the

constructor. This pfGroup is created withmakePickableTriStrip or

makePickableLnStrip prior to the constructor. The second parameter is a pointer to the

callback function for thenodeGroup icon. The third parameter, only present in the second

constructor, is used to pass any user data which is used by thenodeGroup ’s callback.

Within the constructor theleftGroup and rightGroup icons are made with

makePickableTriStrip and are assigned callbacks which rotaterotateDCS .

downGroup ’s icon is similarly created and a callback which collapses the menu is assigned

to the icon.edgesGroup is created and is added as a child ofrotateDCS . edgesGroup

is an empty pfGroup at this time since no children have been added. The pfGroups are next

added tonextLevelGroup . Lastly, simSwitch is called so that onlynodeGroup is

rendered.

The entire menu is created only once and its subsequent display is controlled by

manipulatingnextLevelGroup . When the menu is first initialized the entire structure is

built. The procedure in the proceeding paragraphs is followed for each menu level and

addMenuChild is used to add child menu levels to parent levels. When the lowest level

of the menu is createdsimSwitch is used to “turn on” all of the groups which are children

of nextLevelGroup which results in the menu shown in Figure 69. Note, that the

129

children menu levels display only theirnodeGroup . At this time if theleftGroup or

rightGroup icons are selected they will rotaterotateDCS and maintain the amount of

rotation in the MENU_LEVEL membercumRotation . If downGroup is selected,

simSwitch removes all groups fromnextLevelGroup of the lowest menu level.

If a child icon is selected, the appropriate callback is called and the menu is expanded

by callingsimSwitch to “turn on” all of the groups in the membernextLevelGroup for

the child menu level. The chosen icon is highlighted in the same manner point measures

are and the highlighted color of the branch is chosen. Again note, that the newly expanded

menu level only displays itsnodeGroup . An example of the concepts described above is

shown in Figure 74 and Figure 75.

H. SUMMARY

This chapter has presented the design and implementation of the graphical structures

used in the Sand Table. An overview of the desired functionality was given. The actual

Performer structure for each of the control measures was given as well as discussion as to

why particular structures were chosen. The processes used to “pick” objects and terrain

from the Sand Table scene were also discussed. The methods used in the dragging and

dropping of measures were examined. Lastly, the actual structure and implementation of

the cone tree menu structure was specified.

130

1a. Menu Placement.
Menu built. Lowest level
nextLevelGroup displays all
children. Next level
nextLevelGroup displays only
nodeGroup. 1b. rightGroup
Icon Chosen.rotateDCS rotated.

2. Build Point Icon Selected.
Icon is highlighted as point measure,
branch highlight color is switched.
Child’s nextLevelGroup displays
all children.

3. Coordinating Point Icon
Selected.

Same as2.

Figure 74: Actions in Menu Expansion

131

4. downGroup Icon Chosen.
nextLevelGroup removes all
children exceptnodeGroup . Icon
normal color restored, branch no
longer highlighted Resulting

5. leftGroup Icon Selected
rotateDCS rotated

Figure 75: Actions in Menu Expansion(Continued)

132

133

VI. WEAPON FLIGHT PATH VISUALIZER

A. INTRODUCTION

1. Motivation

The purpose of the Sand Table in the virtual environment is to visualize aspects of

battle planning which have not been available in previous paradigms. Thus far, the effort

presented has focused on the rendering, management and manipulation of control measures

on the virtual terrain. However, the concept ofabstract visualization can additionally be

applied to other areas of interest in battlefield planning. One of these areas is that of

visualizing weapons’ trajectories. Of key interest to the military planner are the spatial

relationships of weapons’ fires over the terrain. Put more simply, the commander would

benefit by seeing where in space bullets, artillery and mortar rounds are flying.

This is of crucial importance to a military commander on the modern battlefield where

there is increasing emphasis on maneuver warfare. Simply put, in a modern battle many

types of weapons will be used in concert to create of synergy of weapons effectiveness. For

example, attack helicopters may be used in close proximity to artillery firing, both of which

are supporting an infantry advance. The benefit is the aforementioned synergistic effect.

Conversely, the danger in employing weapons in such a manner is the possibility that

friendly units could come under fire from weapons of friendly forces. Extending the above

example, the attack helicopters could fly through the weapons trajectories of the artillery

creating disastrous effects.

The solution to these dangers has always been meticulous coordination between units

to ensure deconfliction between units. However, this process has been conducted by using

maps and overlays with weapons ranges and directions of fire. Additionally, altitudes of

weapons trajectories are well understood; however, when applied in the area of weapons’

deconfliction the altitudes of weapons are given as altitude “blocks” for the planner to

134

correctly interpret. The true three dimensional aspect of a weapon being fired is lost and

left to the ability of planners and participants to correctly visualize the weapons. Decisions

concerning “close calls” usually err towards a more safe choice to avoid possible conflict;

however, when a safer choice is made the synergistic effects of closely coordinated

weapons’ fires may be reduced.

The problem presents itself as an excellent candidate for visualization on the Sand

Table in the virtual environment. Weapons flight paths can be visualized over the actual

terrain the weapons are being fired. Much of the interpretation concerning the actual flight

paths is eliminated giving planners a common frame of reference. While physics prevents

knowing exactly where every round fired will go, a physically based, graphically visualized

representation of weapons’ fires can beneficial in the coordination between friendly units.

Returning to the above example, if attack helicopters could actually “see” where artillery

was firing, the helicopter crews could successfully avoid friendly fire, while at the same

time conducting their own missions in very close proximity to the artillery trajectories,

thereby, allowing a more concentrated attack on a potential target. Additionally, such a

visualization when applied to enemy weapons, can give a commander insight on

vulnerabilities to his units which previously had to be interpreted from enemy weapons

positions. This previous interpretation is dependant on the commanders skill and

experience.

2. Approach

The approach taken was to implement a weapon’s flight path visualizer in NPSNET.

What this entails is the user being able to select a specific type of weapon and place it on

the virtual terrain. The user will then select an area of fire where the weapon will be used.

For example, an artillery piece will be given a range of bearings over which the weapon

will traverse and a range of elevations over which the weapon will be elevated when fired.

Once the area of coverage is selected, the user will then select any other parameters which

will have an effect on the path of the projectile, such as gun propellant or charge strength.

135

The trajectories of the weapon will then be visualized over the NPSNET terrain. Figure 76

illustrates the desired visualization.

Desired Traversal

Desired Elevation

Figure 76: Weapon’s Trajectory Visualization

User Chooses Area of Coverage

Trajectories Plotted Over Terrain

136

B. BALLISTICS BOX

In order to accomplish the desired functionality, a Performer structure very similar to

the cone tree menu is constructed. The structure will be referred to as theballistics box.

The functionality of the ballistics box will first be discussed followed by a description of

the implementation.

1. Ballistics Box Functionality

Recalling the cone tree menu system, a base level icon depicting a parabola was

present. When this icon is chosen the menu expands to the level shown in Figure 77. Each

of the icons at the expanded level represent different weapons systems which are shown in

Figure 78. A weapon icon is selected and expanded to the terminator. When the terminator

is selected the cone tree menu disappears and is replaced with the ballistics box shown in

Figure 79. The operation of the ballistics box is very similar to that of the cone tree menu.

From the ballistics box the user chooses the parameters of the selected weapon and selects

Figure 77: Expansion of Menu to Terminator

137

one of the two top icons. In the case of the ballistics box there is no check mark terminator.

Rather, the “fan” and “line fan” icons serve as terminators. When one of these is selected,

the ballistics box disappears and the actual trajectory paths are displayed over the terrain as

either three dimensional “fans” or a set of lines which represent the possible projectile

flight paths.

Light
Howitzer

Medium
Howitzer

Heavy
Howitzer

Medium
Machine Gun

Medium
Mortar

Figure 78: Weapon Symbols

Figure 79: BALL_BOX Menu

Upper Right

Lower Right

Upper Left

Lower Left

Terminators

Ray Manipulation
Arrows

138

The “rays” of the ballistics box are themselves selectable and can be rotated. The

lower set of arrow icons rotate the selected rays. Although only one “ray” is selected at a

time, its matching pair is also rotated. For example, if the lower right “ray” were selected

and the left arrow icon was selected, both the lower and upper right rays would rotate.

Similarly, if the up arrow were chosen both the lower right and lower left “rays” would be

elevated. The limits of rotation are the actual degree limitations for the chosen weapon.

Operation of the ballistics box are summarized in Figure 77 and Figure 77.

2. Trajectory Visualization

As was described above, either a fan or lines are used to represent the possible flight

paths of the weapons projectile. The actual flight paths are calculated using a physically

based fourth order Runge-Kutta method. Once the user selects the terminator, the paths at

various incremental angles of elevation and traversal are calculated. Input into the physical

model are the elevation angle of firing, the angular heading of the weapon and the muzzle

velocity of the weapon. The points obtained from the Runge-Kutta are then either made

into line strips or triangle strips depending on the user preference. The current physical

model of the trajectories is not very accurate; however, the emphasis was on the

visualization and a more accurate model can easily be employed at some later time.

Line strips are constructed by using the points provided by the Runge-Kutta directly in

the construction of a line strip primitive pfGeoSet. The construction of the fans is

accomplished using triangle strips. The trajectory is displayed for several angular

elevations. At each elevation the left and right traversal limits are used as vertices in the

construction of the triangle strip. This is shown in an overhead two dimensional view of a

fan in Figure 82.

3. Ballistics Box Design and Implementation

Having discussed the actual functionality and typical operation of the ballistics box,

the actual design and implementation of the ballistics box will now be examined. The

ballistics box is implemented using the class BALL_BOX which is contained in the file

139

Figure 80: Operation of Ballistics Box

1. Ray Selected.
Selected ray is now capable of
being rotated or elevated around
center.

2. Right Arrow is Selected.
Lower Right and Upper Right
“rays” are rotated around center.
User positions as desired.

3. Up Arrow Selected.
Lower Right and Lower Left
“rays” elevated. User positions
as desired.

4. Fan Display Chosen.
Trajectories will be
displayed as fans. Shown in
5.

140

Figure 81: Operation of Ballistics Box(Continued)

5. Trajectory Fans.
Weapon’s possible trajectories
are depicted as fans.

6. Line Display Chosen.
Trajectories will be displayed as
lines. Shown in7.

7. Trajectory Lines.
Weapon’s possible trajectories are
displayed as lines.

141

po_ball.cc. The implementation of the ballistics box will be presented in the same way in

which the cone tree menu system was presented in Chapter V, that being C++ code and a

dissected diagram of the ballistics box. The C++ code is presented in Figure 83 and the

dissected ballistics box is presented in Figure 77.

The structure of the building box actually contains a MENU_LEVEL class object. A

different menu is made for each type of weapon selected from the cone tree menu and the

type of menu to be used is set in the terminator callback from the cone tree menu. In Figure

77 the top portion of the ballistics box class is shown to actually be a menu. Recalling the

structure of MENU_LEVEL (see Figure 70) the base of the menu’s Performer structure is

Figure 82: Trajectory Fan Triangle Strip

Left and Right Traversal
Limits for This Weapon

Elevation

Runga-Kutta
Points

142

a pfDCS namedroot . In the case of the ballistics box, the menu’sroot is simply used to

place the menu in the correctrelative position. Also included is the proper icon for the

chosen weapon. The menu’sroot is then added as a child to the ballistics box’sroot

which as a pfDCS is used to correctly position the ballistics box on the terrain. Again, note

the menu’s terminators. There is no reason why a terminator has to be a particular icon,

rather the actions of selecting an icon are wholly dependant on the associated callback.

lowRightDCS , upRightDCS , upLeftDCS andlowLeftDCS each contain a pfGeode

which contains the geometry for each of the four “rays” in the ballistics box. Each pfGeode

is constructed with the functionmakeArrowGeo which constructs a “ray” using a triangle

Figure 83: BALL_BOX Class

class BALL_BOX{
public:

pfDCS* root,
*lowRightDCS,
*upRightDCS,
*upLeftDCS,
*lowLeftDCS,
*checkDCS,
*menuDCS,

float cumRotLeft,
cumRotRight,
cumRotUp,
cumRotLow,
spread;

pfGroup* downGroup,
*upGroup,
*rightGroup,
*leftGroup,
*HLGroup;

active current;
ballType typeBall;
COEF coef;

BALL_BOX();

};

143

Figure 84: Dissected Ballistics Box

Menu comprised of
MENU_LEVEL class

levels. Note, thatroot is
from MENU_LEVEL.

root

pfDCS

lowRightDCS

pfDCS

lowLeftDCS

pfDCS

upRightDCS

pfDCS

upLeftDCS

pfDCS

pfGeode

pfGeode

pfGeode

pfGeode

upGroup

pfGroup

downGroup

pfGroup

rightGroup

pfGroup

leftGroup

pfGroup

root

pfDCS

144

strip. The pfGeodes are actually 3D cylinders and are constructed by reading in vertices in

a way similar tomake_meas (see page 100). However, the redundant Performer

structure (see Figure 54) required for a point measure are not required for the “rays”.

Rather, only one pfGeode is constructed. Since it is not in a pfBillboard, not below a

pfSwitch and not constructed of lines, it can be picked and highlighted using Perfomer

functions.

Once the pfGeodes are constructed they are put in the appropriate pfDCSs which

enable the rays to be traversed and elevated. Lastly, a callback is assigned to the “rays” in

the same manner callbacks were assigned to menu icons (see page 126). The callback

highlights the ray (using Performer highlighting) and sets the variablecurrent (see Figure

83). current contains the ray which is currently being highlighted and manipulated.

downGroup, upGroup, rightGroup and leftGroup are each pfGroups and are

constructed and assigned callbacks (see page 126) in the same manner in which the cone

tree arrows are constructed. They are assigned callbacks which traverse or elevate the

selected ray which is contained incurrent . The callback checks which ray is being

manipulated and which action is being done to that ray. Recalling that when rays are

moved they move as pairs, the callback finds the appropriate two pfDCSs and rotates them

by an amount contained in the memberscumRotLeft , cumRotRight , cumRotUp or

cumRotLow. Each of these members contains the accumulative rotations of the ray

pfDCSs. One additional member,spread , contains the angular spread between the rays.

This is used to ensure that the rays cannot spread greater than the allowed traversal of the

weapon and to ensure that “negative traversal” does not occur, for example the lower left

ray being rotated further right than the lower right ray. Lastly, each of the above pfGroups

and pfDCSs are added as children toroot .

An overview of the BALL_BOX implementation can now be given. After selecting

the trajectory visualizer from the cone tree menu system the BALL_BOX graphical

structure of Figure 77 is placed on the terrain by translatingroot to the correct position.

The user then selects a ray, which executes a callback which highlights the ray and sets it

145

ascurrent . Next, a BALL_BOX menu arrow is chosen, which by callback rotates the

appropriate ray’s pfDCS. When the rays have been positioned as desired, the terminator

from the menu portion of the BALL_BOX is selected which by callback, collapses the

menu, and calculates and displays the trajectories.

C. SUMMARY

This chapter has examined the visualization of weapons trajectories. The motivation

for doing the visualization was discussed. It was shown how the trajectory visualizer is

selected from the cone tree menu. An operational overview was given for the ballistics box

tool. The actual visualization of the trajectories was discussed. Lastly, the implementation

of the ballistics box was discussed.

146

147

VII. CONCLUSION

A. RESULTS

The Sand Table was constructed and runs on the most current version of NPSNET

IV.8. The system is currently functional with the current version of ModSAF which is

ModSAF 1.5. To run the system NPSNET is started as normal. The Sand Table system

can run using any terrain database which is currently available to ModSAF and NPSNET.

Any number of Sand Table or ModSAF stations can be brought up with the PO Protocol

“handshaking” being successful. The only user coordination needed is for the users of

ModSAF stations to select the “NPSNET” overlay. There was no way to select this overlay

remotely from the Sand Table and the most the Sand Table could do was to notify ModSAF

of the overlay’s existence. After this overlay is selected all measures constructed on either

the ModSAF station or the Sand Table will function. Measures constructed on any station

will be displayed remotely on any other station. Measures constructed on a Sand Table will

be correctly maintained by ModSAF. Measures created on ModSAF can be updated by any

Sand Table station.

The cone tree menu system can be positioned on the terrain as shown in Figure 85.

From the menu measures can be built and placed on the terrain. In this case a point measure

is under construction. Figure 86 depicts a contact point and a coordinating point placed

on Fort Benning Terrain. These measures could have been constructed using the cone tree

menu system. Alternatively, the measures could have been created at remote stations. They

will appear on the local Sand Table and can be manipulated in real time. Figure 87 shows

a minefield which was created on a ModSAF station as rendered on the Sand Table.

Additionally, there are several point measures and a base level cone tree menu. Also note

the tank and helicopter present. This demonstrates that all of the pre-existing functionality

of NPSNET is still available. Figure 88 shows the same minefield after having been

148

Figure 85: Cone Tree Menu Placed on Fort Benning Terrain

149

Figure 86: Point Control Measures on Fort Benning Terrain

150

Figure 87: ModSAF Minefield Placed on Range 400 Terrain

151

Figure 88: Minefield After Being Dragged and Dropped

152

dragged and dropped. The changes were then broadcast to the ModSAF station which

reflected the change in position. As the minefield was being dragged it was represented

with a low resolution model which enables the drag to occur in real time.

Linear control measures can also be built on the Sand Table. Figure 89 shows an open

line being built. The cone arrows represent where the line’s prospective points are placed.

The cone arrows or the entire line can be dragged and dropped as it is being constructed.

Figure 90 shows the line after construction is complete.

 Similarly, Figure 91 shows a closed line loop being constructed on Range 400. Note,

that the lines are terrain following. Figure 92 shows the line loop after construction is

complete. Also in Figure 92 is another line created on the Sand Table using a different

color.

Lastly, the Sand Table implemented the weapon’s trajectory visualizer. Figure 93

shows the weapon’s trajectory visualizer tool being selected from the cone tree menu

system. In Figure 93 a mortar is being selected from the cone tree menu. Figure 94 shows

the rays which represent the desired elevation and traversal of the mortar. Lastly, Figure

95 shows the fans actually representing the projectile flight paths.

B. FUTURE WORK

The Sand Table in the virtual environment succeeded in implementing a system to aid

in the visualization of abstract measures during military planning. This was the first effort

in implementing a Sand Table and the possibilities for future work are promising. The

Sand Table provided an architecture which is very extensible. Listed below are areas in

which further work on the Sand Table may prove beneficial.

1. More Robust Measure Representation

The current Sand Table represents three different types of point control measures. This

should be increased to depict an inclusive variety of military point symbology. Similarly,

linear measures are able to be represented by varying thickness and color of lines; however,

only onestyle of line can be represented. The Sand Table should be extended to represent

153

Figure 89: Line Being Built on Fort Benning Terrain

154

Figure 90: Line After Construction Complete

155

a more inclusive set of military linear measures. Additionally, axes of advance and

heliborne axes of advance should be able to be displayed. Lastly, the minefields should

have a variety of styles and representations.

Figure 91: Closed Line Loop Constructed On Range 400

156

2. Extended Planning Capabilities

The Sand Table can represent measures on the terrain; yet, it cannot build a complete

battle plan and execute the plan. The Sand Table should be extended to utilize more of

ModSAF’s capabilities concerning the semi-autonomous management of forces. In the

Figure 92: Closed Line Loop After Construction

157

future the users should be able to construct a plan and see units moving over terrain with

respect to the control measures which were laid down. The current Sand Table can render

entities on the battlefield as was seen with the tank and helicopter in the above figures;

however, these units are other NPSNET stations simulating vehicles. Their movements are

all in real time and they are single vehicles. The planning capability required in the Sand

Table dictates a need for a user to be able to plan the movements of entire units. The user

should then be able play back plans and make modifications.

With this planning capability, the user should be able to view the units as military

symbology or as the actual vehicles and equipment which comprise the units. Further, the

Figure 93: Trajectory Visualizer Being Selected From Cone Tree Menu

158

user should be able to select and change how the units are depicted. For example a tank

platoon should be able to be represented as the symbol for a tank platoon or the actual tanks.

This planning ability should also include the creation and tasking of units from the cone

tree menu system.

3. Additional Object Creation and Manipulation

While the Sand Table can create, drag, and drop control measures, the capability to

drag additional objects should be created. For example, the user should be able to create a

truck or pile of debris and place it on the terrain. These objects should then be able to be

dragged and dropped as control measures are and their movements should be networked as

are the control measures.

Figure 94: Rays Setting Mortar Firing Area

159

Figure 95: Fans Showing Weapon’s Trajectories

160

Additionally, entities on the battlefield should be able to be dragged and dropped. For

example, the tank or helicopter in the above figures should be able to be selected and moved

to another location. This has not existed in prior versions of NPSNET because such

movement does not make sense in regards to vehicle simulation and game play. It does

make sense in rehearsal for example, when a commander may decide in the middle of a

battle that a vehicle or unit may be effective in another location. Dragging would provide

this capability. Note, that this dragging would entail much more effort than the Sand Table,

because not only would PO Protocol being used, but the vehicles are actual DIS entities and

would have to be moved using the DIS Protocol.

4. Display Research

The Sand Table is currently displayed on normal workstation monitors. Other display

technologies should be examined. These include conducting planning with head mounted

displays or the “workbench” display used by researchers in Germany. See “Medical

Visualization” on page 11. Additionally, stereoscopic applications should be examined

with consideration given to different mouse cursor possibilities.

5. Distant Research

While the future work presented above is immediately possible, future work further

down the road should also be considered. Such work would include a real timecurrent

operations version of the Sand Table. The current version of the Sand Table allows

planning or training in the virtual world. In the future, the Sand Table could be the display

system of what was actually occurring in the real world. For example, during a battle the

commander could “view” the battle being fought via a virtual environment. The virtual

environment would be provided with data from the real world. The commander would be

able to achieve a viewpoint of the battle from a perspective never before seen. A potential

danger in this application would be in representing the real world incorrectly in the virtual

world. However, the display could provide a means of presenting a large amount of

161

information which commanders already deal with and are currently organizing and

visualizing in their heads.

Lastly, the Sand Table concept could be the basis for anaugmented reality system for

actual units in the field. Graphical displays could be projected on a helmet mounted display

indicating control measures. For example a pilot could “see” the route he was assigned to

fly superimposed over the physical terrain. Additionally, he could “see” and avoid

weapons trajectories which would again be superimposed on physical terrain.

C. SUMMARY

The Sand Table was implemented successfully. It is “up and running” and is under

current NPSNET configuration management. It accomplished many of the goals of

visualizing abstract military data. It is networked and provides intuitive visualization and

manipulation of control measures on virtual terrain. The Sand Table is a good starting point

for future development and provides an easily extensible architecture for such efforts.

162

163

LIST OF REFERENCES

[BANK95] Banks, Davis C. and Kelley, Michael, “Tracking a Turbulent Spot in an
Immersive Environment,”Proceedings 1995 Symposium on Interactive 3D Graphics,
pp. 171-172, ACM Press, 1995.

[BARH94] Barham, Paul, T., Pratt, David, R., Zyda, Michael, J., Locke, John and
Falby, John, “NPSNET-IV: A DIS Compatible, Object-Oriented, Multiprocessed
Software Architecture For Virtual Environments,” Naval Postgraduate School,
Monterey, CA, 1994.

[BRYS91] Bryson, Steve and Levit, Creon, “The Virtual Windtunnel: An Experiment
for the Exploration of Three-Dimensional Unsteady Flows,” RNR Technical Report
RNR-92-013, Moffet Field, CA, 1991.

[DRIS95] Driskill, Elena and Cohen, Elaine, “Interactive Design, Analysis, and
Illustration of Assemblies,”Proceedings 1995 Symposium on Interactive 3D Graphics,
pp. 27-33, ACM Press, 1995.

[KALA93] Kalawsky, Roy, S., The Science of Virtual Reality and Virtual
Environments, pp. 313-318, Addison-Wesley, 1993.

[KIJI94] Kijima, Ryugo, Shirakawa, Kimiko, Hirose, Michitaka and Nihei, Kenji,
“Virtual Sandbox: Development of an Application of Virtual Environments for
Clinical Medicine,”Presence Teleoperators and Virtual Environments, vol. 3, no. 1,
pp. 45-59, MIT Press, 1994.

[KRUG94] Kruger, Wolfgang, Bohn, Christian, A., Frohlich, Bernd, Schuth, Heinrich,
Strauss, Wolfgang and Wesche, Gerold, “The Responsive Workbench A Virtual
Environment for Scientists, Engineers, Physicians and Architects,” Sankt Augustin,
Germany, 1994.

[MCCO87] McCormick, B., T.A. DeFanti, and M.D. Brown, eds, “Visualization in
scientific computing,”Computer Graphics, vol 21, no. 6, 1987.

[MOHN94] Mohn, Howard, Lee, “Implementation of a Tactical Mission Planner for
Command and Control of Computer Generated Forces in ModSAF” (Master’s Thesis,
Naval Postgraduate School, Monterey, California, 1994).

164

[NRC95] National Research Council,Virtual Reality Scientific and Technological
Challenges, pp. 433-437, National Academy Press, 1995.

[ROBE91] Robertson, George G., Mackinlay, Jock, D., and Card, Stuart, K., “Cone
Trees: Animated 3D Visualizations of Hierarchial Information,” Xerox PARC, Palo
Alto, CA, 1991.

[ROHR94] Rohrer, Jim, J., Design and Implementation of Tools to Increase User
Control and Knowledge Elicitation in a Virtual Battlespace,” Master of Science Thesis,
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, 1994.

[SAFF93] Saffi, Maureen, R., The ModSAF Interface, Version B, User Guide, Loral
Advanced Distributed Simulation, Inc., 1993.

[SMIT93] Smith, Joshua E., Courtemanche, Anthony, J., “LibPO, Persistent Object
Library,” ModSAF B Software Documentation, Loral Advanced Distributed
Simulation, Inc., 1993.

[STAS92] Stasko, John, T., “Three-Dimensional Computation Visualization,”
Technical Report GIT-GVU-92-20, Georgia Institute of Technology, Atlanta, GA,
1992.

[STYT95] Stytz, Martin, R., Hobbs, Bruce, Kunz, Andrea, Solz, Brian and Wilson,
Kirk, “Portraying and Understanding Large-Scale Distributed Virtual Environments:
Experience and Tentative Conclusions,”Presence, vol. 4, no. 2, pp. 146-168, MIT
Press, 1995.

[ZYDA93] Zyda, Michael J., Pratt, David R., Falby, John S., Barham, Paul T. and
Kelleher, Kristen M., “NPSNET and the Naval Postgraduate School Graphics and
Video Laboratory,” Presence, Vol. 2, No. 3.

165

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center..2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library...2
Code 013
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code CS ...2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr David R. Pratt, Code CSPr ...1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Mr. John Falby, Code CSFa...1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Mr. Paul Barham, Code CS/Barham..1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Director, Training and Education ..1
MCCDC, Code C46
1019 Elliot Rd.
Quantico, VA 22134-5027

8. Commanding Officer ...3
NCCOSC RDTE Division
San Diego, CA 92152-5000
Attention: Jeff Clarkson, Code 44206

166

9. Captain Samuel A. Kirby...2
3424 Chambersburg Avenue
Duluth, MN 55811

